These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 31081812)
1. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
2. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and Evaluation of Alginate/Bacterial Cellulose Nanocrystals-Chitosan-Gelatin Composite Scaffolds. Li Z; Chen X; Bao C; Liu C; Liu C; Li D; Yan H; Lin Q Molecules; 2021 Aug; 26(16):. PubMed ID: 34443588 [TBL] [Abstract][Full Text] [Related]
4. Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration. Gao W; Sun L; Zhang Z; Li Z J Biomater Sci Polym Ed; 2020 Jun; 31(8):984-998. PubMed ID: 32100612 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685 [TBL] [Abstract][Full Text] [Related]
7. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Wei J; Wang B; Li Z; Wu Z; Zhang M; Sheng N; Liang Q; Wang H; Chen S Carbohydr Polym; 2020 Jun; 238():116207. PubMed ID: 32299554 [TBL] [Abstract][Full Text] [Related]
8. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
9. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
10. SLA-3d printed building and characteristics of GelMA/HAP biomaterials with gradient porous structure. Chen Q; Zou B; Wang X; Zhou X; Yang G; Lai Q; Zhao Y J Mech Behav Biomed Mater; 2024 Jul; 155():106553. PubMed ID: 38640694 [TBL] [Abstract][Full Text] [Related]
11. Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction. Visscher DO; Gleadall A; Buskermolen JK; Burla F; Segal J; Koenderink GH; Helder MN; van Zuijlen PPM J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1711-1721. PubMed ID: 30383916 [TBL] [Abstract][Full Text] [Related]
12. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related]
13. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045 [TBL] [Abstract][Full Text] [Related]
14. 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering. Chawla D; Kaur T; Joshi A; Singh N Int J Biol Macromol; 2020 Feb; 144():560-567. PubMed ID: 31857163 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of 3D Printed Gelatin-Based Scaffolds with Varying Pore Size for MSC-Based Adipose Tissue Engineering. Tytgat L; Kollert MR; Van Damme L; Thienpont H; Ottevaere H; Duda GN; Geissler S; Dubruel P; Van Vlierberghe S; Qazi TH Macromol Biosci; 2020 Apr; 20(4):e1900364. PubMed ID: 32077631 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
17. Three-Dimensional Extrusion Printed Urinary Specific Grafts: Mechanistic Insights into Buildability and Biophysical Properties. Chowdhury SR; Mondal G; Ratnayake P; Basu B ACS Biomater Sci Eng; 2024 Feb; 10(2):1040-1061. PubMed ID: 38294204 [TBL] [Abstract][Full Text] [Related]
18. A 3D-printable gelatin/alginate/ε-poly-l-lysine hydrogel scaffold to enable porcine muscle stem cells expansion and differentiation for cultured meat development. Wang X; Wang M; Xu Y; Yin J; Hu J Int J Biol Macromol; 2024 Jun; 271(Pt 1):131980. PubMed ID: 38821790 [TBL] [Abstract][Full Text] [Related]
19. Development and optimization of starch-based biomaterial inks and the effect of infill patterns on the mechanical, physicochemical, and biological properties of 3D printed scaffolds for tissue engineering. Shyam R; Palaniappan A Int J Biol Macromol; 2024 Feb; 258(Pt 2):128986. PubMed ID: 38154358 [TBL] [Abstract][Full Text] [Related]
20. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Zhang X; Morits M; Jonkergouw C; Ora A; Valle-Delgado JJ; Farooq M; Ajdary R; Huan S; Linder M; Rojas O; Sipponen MH; Österberg M Biomacromolecules; 2020 May; 21(5):1875-1885. PubMed ID: 31992046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]