These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31082276)

  • 1. Automated detection of auditory response: applying sequential detection strategies with constant significance level to magnitude-squared coherence.
    Antunes F; Zanotelli T; Bonato Felix L
    Int J Audiol; 2019 Sep; 58(9):598-603. PubMed ID: 31082276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the power of objective response detection of evoked responses in noise by using average and product of magnitude-squared coherence of two different signals.
    Zanotelli T; Leite Miranda de Sá AMF; Mendes EMAM; Felix LB
    Med Biol Eng Comput; 2019 Oct; 57(10):2203-2214. PubMed ID: 31399896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of auditory threshold using Multiple Magnitude-Squared Coherence and amplitude modulated tones monaural stimulation around 40 Hz.
    Silva GM; Antunes F; Henrique CS; Felix LB
    Comput Methods Programs Biomed; 2018 Jun; 159():71-76. PubMed ID: 29650320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Objective detection of auditory steady-state evoked potentials based on mutual information.
    Bidelman GM; Bhagat SP
    Int J Audiol; 2016; 55(5):313-9. PubMed ID: 26924597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-channel evoked response detection using only phase information.
    Miranda de Sá AM; Felix LB
    J Neurosci Methods; 2003 Oct; 129(1):1-10. PubMed ID: 12951227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated auditory response detection: Improvement of the statistical test strategy.
    Stürzebecher E; Cebulla M
    Int J Audiol; 2013 Dec; 52(12):861-4. PubMed ID: 24219121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bayesian approach to the spectral F-Test: Application to auditory steady-state responses.
    Romao M; Tierra-Criollo CJ
    Comput Methods Programs Biomed; 2020 Jan; 183():105100. PubMed ID: 31622797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multichannel search strategy for improving the detection of auditory steady-state response.
    Antunes F; Zanotelli T; Simpson DM; Felix LB
    Med Biol Eng Comput; 2021 Feb; 59(2):391-399. PubMed ID: 33495982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective detection of 40 Hz auditory evoked potentials: phase coherence vs. magnitude-squared coherence.
    Dobie RA; Wilson MJ
    Electroencephalogr Clin Neurophysiol; 1994 Sep; 92(5):405-13. PubMed ID: 7523084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated auditory response detection: Further improvement of the statistical test strategy by using progressive test steps of iteration.
    Cebulla M; Stürzebecher E
    Int J Audiol; 2015 Aug; 54(8):568-72. PubMed ID: 25831956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase weighting: a method to improve objective detection of steady-state evoked potentials.
    Dobie RA; Wilson MJ
    Hear Res; 1994 Sep; 79(1-2):94-8. PubMed ID: 7806487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Detection of Vowel Envelope Frequency Following Responses Using Hotelling's T2 Analysis.
    Vanheusden FJ; Bell SL; Chesnaye MA; Simpson DM
    Ear Hear; 2019; 40(1):116-127. PubMed ID: 29757799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-processing of auditory steady-state responses to correct spectral leakage.
    Felix LB; de Sá AM; Mendes EM; Moraes MF
    J Neurosci Methods; 2009 Jun; 181(1):145-9. PubMed ID: 19394362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faster automatic ASSR detection using sequential tests.
    Zanotelli T; Antunes F; Simpson DM; Mazoni Andrade Marçal Mendes E; Felix LB
    Int J Audiol; 2020 Aug; 59(8):631-639. PubMed ID: 32091286
    [No Abstract]   [Full Text] [Related]  

  • 15. Detection efficiency of auditory steady state evoked by modulated noise.
    Santos TS; Silva JJ; Lins OG; Melges DB; Tierra-Criollo CJ
    Hear Res; 2016 Sep; 339():125-31. PubMed ID: 27262450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of auditory steady-state responses based on the averaging of independent EEG epochs.
    Prado-Gutierrez P; Martínez-Montes E; Weinstein A; Zañartu M
    PLoS One; 2019; 14(1):e0206018. PubMed ID: 30677031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate evoked response detection based on the spectral F-test.
    Rocha PFF; Felix LB; Miranda de Sá AMFL; Mendes EMAM
    J Neurosci Methods; 2016 May; 264():113-118. PubMed ID: 26976723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the detection paradigm in recording auditory steady-state responses.
    Luts H; Van Dun B; Alaerts J; Wouters J
    Ear Hear; 2008 Aug; 29(4):638-50. PubMed ID: 18469712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dealing with correlations in the multichannel EEG using bipolar derivations and Monte Carlo simulations: application to the detection of auditory steady-state responses.
    Zanotelli T; Antunes F; Mendes EMAM; Felix LB
    Med Biol Eng Comput; 2023 Mar; 61(3):811-819. PubMed ID: 36607504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for detecting auditory steady-state potentials recorded from humans.
    Champlin CA
    Hear Res; 1992 Feb; 58(1):63-9. PubMed ID: 1559907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.