BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31082421)

  • 1. Stimulation of ATF3 interaction with Smad4 via TGF-β1 for matrix metalloproteinase 13 gene activation in human breast cancer cells.
    Rohini M; Arumugam B; Vairamani M; Selvamurugan N
    Int J Biol Macromol; 2019 Aug; 134():954-961. PubMed ID: 31082421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-β1-stimulation of NFATC2 and ATF3 proteins and their interaction for matrix metalloproteinase 13 expression in human breast cancer cells.
    Rohini M; Vairamani M; Selvamurugan N
    Int J Biol Macromol; 2021 Dec; 192():1325-1330. PubMed ID: 34687766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor-beta1 regulation of ATF-3 and identification of ATF-3 target genes in breast cancer cells.
    Kwok S; Rittling SR; Partridge NC; Benson CS; Thiyagaraj M; Srinivasan N; Selvamurugan N
    J Cell Biochem; 2009 Oct; 108(2):408-14. PubMed ID: 19582787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming growth factor-β1 regulation of ATF-3, c-Jun and JunB proteins for activation of matrix metalloproteinase-13 gene in human breast cancer cells.
    Gokulnath M; Swetha R; Thejaswini G; Shilpa P; Selvamurugan N
    Int J Biol Macromol; 2017 Jan; 94(Pt A):370-377. PubMed ID: 27751807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells.
    Selvamurugan N; Kwok S; Partridge NC
    J Biol Chem; 2004 Jun; 279(26):27764-73. PubMed ID: 15084595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MiR-4638-3p regulates transforming growth factor-β1-induced activating transcription factor-3 and cell proliferation, invasion, and apoptosis in human breast cancer cells.
    Akshaya RL; Rohini M; He Z; Partridge NC; Selvamurugan N
    Int J Biol Macromol; 2022 Dec; 222(Pt B):1974-1982. PubMed ID: 36208811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of non-coding RNAs on the regulation of activating transcription factor 3 in human breast cancer cells.
    Akshaya RL; Akshaya N; Selvamurugan N
    Comput Biol Chem; 2020 Dec; 89():107386. PubMed ID: 33068918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Runx2, a target gene for activating transcription factor-3 in human breast cancer cells.
    Gokulnath M; Partridge NC; Selvamurugan N
    Tumour Biol; 2015 Mar; 36(3):1923-31. PubMed ID: 25380580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells.
    Eiselein L; Nyunt T; Lamé MW; Ng KF; Wilson DW; Rutledge JC; Aung HH
    PLoS One; 2015; 10(12):e0145523. PubMed ID: 26709509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TGF-β1 induces HMGA1 expression in human breast cancer cells: implications of the involvement of HMGA1 in TGF-β signaling.
    Zu X; Zhong J; Tan J; Tan L; Yang D; Zhang Q; Ding W; Liu W; Wen G; Liu J; Cao R; Jiang Y
    Int J Mol Med; 2015 Mar; 35(3):693-701. PubMed ID: 25572132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional activation of collagenase-3 by transforming growth factor-beta1 is via MAPK and Smad pathways in human breast cancer cells.
    Selvamurugan N; Fung Z; Partridge NC
    FEBS Lett; 2002 Dec; 532(1-2):31-5. PubMed ID: 12459458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATF3, an adaptive-response gene, enhances TGF{beta} signaling and cancer-initiating cell features in breast cancer cells.
    Yin X; Wolford CC; Chang YS; McConoughey SJ; Ramsey SA; Aderem A; Hai T
    J Cell Sci; 2010 Oct; 123(Pt 20):3558-65. PubMed ID: 20930144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.
    Jo E; Park SJ; Choi YS; Jeon WK; Kim BC
    Neoplasia; 2015 Jul; 17(7):525-37. PubMed ID: 26297431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BRCA1 regulates transforming growth factor-β (TGF-β1) signaling through Gadd45a by enhancing the protein stability of Smad4.
    Li D; Kang N; Ji J; Zhan Q
    Mol Oncol; 2015 Oct; 9(8):1655-66. PubMed ID: 26022109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Expression of secretory leukocyte proteinase inhibitor in human bronchial epithelial cell is downregulated by transforming growth factor-beta1/Smads pathway].
    Niu RC; Luo BL; Hu CP; Feng JT
    Zhonghua Yi Xue Za Zhi; 2008 Aug; 88(30):2117-21. PubMed ID: 19080472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming growth factor-beta1 and Smad4 signaling pathway down-regulates renal extracellular matrix degradation in diabetic rats.
    Yang Q; Xie RJ; Yang T; Fang L; Han B; Zhang GZ; Cheng ML
    Chin Med Sci J; 2007 Dec; 22(4):243-9. PubMed ID: 18246672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.
    Li HY; Ju D; Zhang DW; Li H; Kong LM; Guo Y; Li C; Wang XL; Chen ZN; Bian H
    Sci Rep; 2015 Nov; 5():16552. PubMed ID: 26559755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGF-β1 inhibits the growth and metastasis of tongue squamous carcinoma cells through Smad4.
    Wang X; Sun W; Zhang C; Ji G; Ge Y; Xu Y; Zhao Y
    Gene; 2011 Oct; 485(2):160-6. PubMed ID: 21726607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of transforming growth factor-β1-stimulation of Runx2 acetylation for matrix metalloproteinase 13 expression in osteoblastic cells.
    Gomathi K; Rohini M; Partridge NC; Selvamurugan N
    Biol Chem; 2022 Feb; 403(3):305-315. PubMed ID: 34643076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells.
    Deckers M; van Dinther M; Buijs J; Que I; Löwik C; van der Pluijm G; ten Dijke P
    Cancer Res; 2006 Feb; 66(4):2202-9. PubMed ID: 16489022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.