BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 31082442)

  • 21. Archaea: an archetype for replication initiation studies?
    Kelman LM; Kelman Z
    Mol Microbiol; 2003 May; 48(3):605-15. PubMed ID: 12694608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proposed Role for KaiC-Like ATPases as Major Signal Transduction Hubs in Archaea.
    Makarova KS; Galperin MY; Koonin EV
    mBio; 2017 Dec; 8(6):. PubMed ID: 29208747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Archaeal histone-based chromatin structures regulate transcription elongation rates.
    Wenck BR; Vickerman RL; Burkhart BW; Santangelo TJ
    Commun Biol; 2024 Feb; 7(1):236. PubMed ID: 38413771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleoid-associated proteins in Crenarchaea.
    Driessen RP; Dame RT
    Biochem Soc Trans; 2011 Jan; 39(1):116-21. PubMed ID: 21265758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular machines in archaeal DNA replication.
    Beattie TR; Bell SD
    Curr Opin Chem Biol; 2011 Oct; 15(5):614-9. PubMed ID: 21852183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Archaeal chromatin 'slinkies' are inherently dynamic complexes with deflected DNA wrapping pathways.
    Bowerman S; Wereszczynski J; Luger K
    Elife; 2021 Mar; 10():. PubMed ID: 33650488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea.
    Visone V; Vettone A; Serpe M; Valenti A; Perugino G; Rossi M; Ciaramella M
    Int J Mol Sci; 2014 Sep; 15(9):17162-87. PubMed ID: 25257534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya.
    Hecker A; Graille M; Madec E; Gadelle D; Le Cam E; van Tilbergh H; Forterre P
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):29-35. PubMed ID: 19143597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the Structure of Sulfolobus Nucleoid Using Engineered Sac7d Dimers with a Defined Orientation.
    Turaga G; Edmondson SP; Smith K; Shriver JW
    Biochemistry; 2016 Nov; 55(45):6230-6237. PubMed ID: 27766846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vitro Transcription Assay for Archaea Belonging to Sulfolobales.
    Sybers D; Charlier D; Peeters E
    Methods Mol Biol; 2022; 2516():81-102. PubMed ID: 35922623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA-Binding Properties of a Novel Crenarchaeal Chromatin-Organizing Protein in
    Lemmens L; Wang K; Ruykens E; Nguyen VT; Lindås AC; Willaert R; Couturier M; Peeters E
    Biomolecules; 2022 Mar; 12(4):. PubMed ID: 35454113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Archaeal RNA polymerase and transcription regulation.
    Jun SH; Reichlen MJ; Tajiri M; Murakami KS
    Crit Rev Biochem Mol Biol; 2011 Feb; 46(1):27-40. PubMed ID: 21250781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The orientation of DNA in an archaeal transcription initiation complex.
    Bartlett MS; Thomm M; Geiduschek EP
    Nat Struct Biol; 2000 Sep; 7(9):782-5. PubMed ID: 10966650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global phylogenomic analysis disentangles the complex evolutionary history of DNA replication in archaea.
    Raymann K; Forterre P; Brochier-Armanet C; Gribaldo S
    Genome Biol Evol; 2014 Jan; 6(1):192-212. PubMed ID: 24398374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Archaeal minichromosome maintenance (MCM) helicase can unwind DNA bound by archaeal histones and transcription factors.
    Shin JH; Santangelo TJ; Xie Y; Reeve JN; Kelman Z
    J Biol Chem; 2007 Feb; 282(7):4908-4915. PubMed ID: 17158792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea.
    Daniels JP; Kelly S; Wickstead B; Gull K
    Biol Direct; 2009 Jul; 4():24. PubMed ID: 19640276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex.
    Renfrow MB; Naryshkin N; Lewis LM; Chen HT; Ebright RH; Scott RA
    J Biol Chem; 2004 Jan; 279(4):2825-31. PubMed ID: 14597623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation.
    Bell SD; Botting CH; Wardleworth BN; Jackson SP; White MF
    Science; 2002 Apr; 296(5565):148-51. PubMed ID: 11935028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea.
    Rivera-Gómez N; Martínez-Núñez MA; Pastor N; Rodriguez-Vazquez K; Perez-Rueda E
    Microbiology (Reading); 2017 Aug; 163(8):1167-1178. PubMed ID: 28777072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Archeal DNA replication: eukaryal proteins in a bacterial context.
    Grabowski B; Kelman Z
    Annu Rev Microbiol; 2003; 57():487-516. PubMed ID: 14527289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.