These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31082442)

  • 81. Do Archaea Need an Origin of Replication?
    Kelman LM; Kelman Z
    Trends Microbiol; 2018 Mar; 26(3):172-174. PubMed ID: 29268981
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Interplay between Alba and Cren7 Regulates Chromatin Compaction in
    Cajili MKM; Prieto EI
    Biomolecules; 2022 Mar; 12(4):. PubMed ID: 35454068
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Architectural roles of Cren7 in folding crenarchaeal chromatin filament.
    Zhang Z; Zhao M; Chen Y; Wang L; Liu Q; Dong Y; Gong Y; Huang L
    Mol Microbiol; 2019 Mar; 111(3):556-569. PubMed ID: 30499242
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Chromosome replication, nucleoid segregation and cell division in archaea.
    Bernander R
    Trends Microbiol; 2000 Jun; 8(6):278-83. PubMed ID: 10838586
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase.
    Smollett K; Blombach F; Reichelt R; Thomm M; Werner F
    Nat Microbiol; 2017 Mar; 2():17021. PubMed ID: 28248297
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Transcription initiation in Archaea: facts, factors and future aspects.
    Soppa J
    Mol Microbiol; 1999 Mar; 31(5):1295-305. PubMed ID: 10200952
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Transcription Regulators in Archaea: Homologies and Differences with Bacterial Regulators.
    Lemmens L; Maklad HR; Bervoets I; Peeters E
    J Mol Biol; 2019 Sep; 431(20):4132-4146. PubMed ID: 31195017
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Structure of histone-based chromatin in Archaea.
    Mattiroli F; Bhattacharyya S; Dyer PN; White AE; Sandman K; Burkhart BW; Byrne KR; Lee T; Ahn NG; Santangelo TJ; Reeve JN; Luger K
    Science; 2017 Aug; 357(6351):609-612. PubMed ID: 28798133
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Temperature, template topology, and factor requirements of archaeal transcription.
    Bell SD; Jaxel C; Nadal M; Kosa PF; Jackson SP
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15218-22. PubMed ID: 9860949
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Evidence for a Xer/dif system for chromosome resolution in archaea.
    Cortez D; Quevillon-Cheruel S; Gribaldo S; Desnoues N; Sezonov G; Forterre P; Serre MC
    PLoS Genet; 2010 Oct; 6(10):e1001166. PubMed ID: 20975945
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Biology, biochemistry and the molecular machinery of Archaea.
    Reeve JN; Schmitz RA
    Curr Opin Microbiol; 2005 Dec; 8(6):627-9. PubMed ID: 16246618
    [No Abstract]   [Full Text] [Related]  

  • 93. Orientation of the transcription preinitiation complex in archaea.
    Bell SD; Kosa PL; Sigler PB; Jackson SP
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13662-7. PubMed ID: 10570129
    [TBL] [Abstract][Full Text] [Related]  

  • 94. G-Quadruplexes in the Archaea Domain.
    Brázda V; Luo Y; Bartas M; Kaura P; Porubiaková O; Šťastný J; Pečinka P; Verga D; Da Cunha V; Takahashi TS; Forterre P; Myllykallio H; Fojta M; Mergny JL
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32967357
    [TBL] [Abstract][Full Text] [Related]  

  • 95. DNA recombination and repair in the archaea.
    Seitz EM; Haseltine CA; Kowalczykowski SC
    Adv Appl Microbiol; 2001; 50():101-69. PubMed ID: 11677683
    [No Abstract]   [Full Text] [Related]  

  • 96. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox.
    Brochier C; Forterre P; Gribaldo S
    Genome Biol; 2004; 5(3):R17. PubMed ID: 15003120
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Archaeal DNA repair: paradigms and puzzles.
    White MF
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):690-3. PubMed ID: 12773184
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Small Proteins in Archaea, a Mainly Unexplored World.
    Weidenbach K; Gutt M; Cassidy L; Chibani C; Schmitz RA
    J Bacteriol; 2022 Jan; 204(1):e0031321. PubMed ID: 34543104
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Archaeal DNA Replication.
    Greci MD; Bell SD
    Annu Rev Microbiol; 2020 Sep; 74():65-80. PubMed ID: 32503372
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Crystal structure of archaeal chromatin protein Alba2-double-stranded DNA complex from Aeropyrum pernix K1.
    Tanaka T; Padavattan S; Kumarevel T
    J Biol Chem; 2012 Mar; 287(13):10394-10402. PubMed ID: 22334696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.