These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31082593)

  • 41. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake.
    Zheng Z; Ren J; Li Y; Huang C; Liu G; Du C; Lyu H
    Sci Total Environ; 2016 Dec; 573():39-54. PubMed ID: 27552729
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Temporal-spatial Distribution of Nitrogen and Phosphorus Nutrients in Lake Taihu Based on Geostatistical Analysis].
    Lü WW; Yao X; Zhang BH; Gao G; Shao KQ
    Huan Jing Ke Xue; 2019 Feb; 40(2):590-602. PubMed ID: 30628321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporal variations in turbidity in an oil sands pit lake.
    Tedford E; Halferdahl G; Pieters R; Lawrence GA
    Environ Fluid Mech (Dordr); 2019; 19(2):457-473. PubMed ID: 31148952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery.
    Giardino C; Pepe M; Brivio PA; Ghezzi P; Zilioli E
    Sci Total Environ; 2001 Mar; 268(1-3):19-29. PubMed ID: 11315741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Water quality monitoring of Lake Burullus (Egypt) using Landsat satellite imageries.
    Mohsen A; Elshemy M; Zeidan B
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):15687-15700. PubMed ID: 33237559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimation of the width of the nearshore zone in Lake Michigan using eleven years of MODIS satellite imagery.
    Warren GJ; Lesht BM; Barbiero RP
    J Great Lakes Res; 2018 Aug; 44(4):563-572. PubMed ID: 31031519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimation of satellite-derived lake water surface temperatures in the western Mediterranean: Integrating multi-source, multi-resolution imagery and a long-term field dataset using a time series approach.
    Virdis SGP; Soodcharoen N; Lugliè A; Padedda BM
    Sci Total Environ; 2020 Mar; 707():135567. PubMed ID: 31780156
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth.
    Karaman M
    J Environ Manage; 2021 Nov; 298():113481. PubMed ID: 34392093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temporal Variation of Chlorophyll-a Concentrations in Highly Dynamic Waters from Unattended Sensors and Remote Sensing Observations.
    Li J; Tian L; Song Q; Sun Z; Yu H; Xing Q
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115895
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Long-Term Satellite Observations of Microcystin Concentrations in Lake Taihu during Cyanobacterial Bloom Periods.
    Shi K; Zhang Y; Xu H; Zhu G; Qin B; Huang C; Liu X; Zhou Y; Lv H
    Environ Sci Technol; 2015 Jun; 49(11):6448-56. PubMed ID: 25936388
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimating the fluctuation of Lake Hulun, China, during 1975-2015 from satellite altimetry data.
    Liu Y; Yue H
    Environ Monit Assess; 2017 Nov; 189(12):630. PubMed ID: 29128974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].
    Cao C; Li XH; Zhang M; Liu SD; Xiao W; Xiao QT; Xu JP
    Huan Jing Ke Xue; 2015 Oct; 36(10):3611-9. PubMed ID: 26841592
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increase in chlorophyll-a concentration in Lake Taihu from 1984 to 2021 based on Landsat observations.
    Yin Z; Li J; Zhang B; Liu Y; Yan K; Gao M; Xie Y; Zhang F; Wang S
    Sci Total Environ; 2023 May; 873():162168. PubMed ID: 36775157
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Seasonal Pollution Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons and Organochlorine Pesticides in Surface Water of Baiyangdian Lake].
    Wang YZ; Zhang J; Zhou XS; Kong FQ; Xu MX
    Huan Jing Ke Xue; 2017 Mar; 38(3):964-978. PubMed ID: 29965566
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of long-term estuarine vegetation changes through Landsat imagery.
    Lopes CL; Mendes R; Caçador I; Dias JM
    Sci Total Environ; 2019 Feb; 653():512-522. PubMed ID: 30414581
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dataset of five years of
    Schütt EM; Lehmann MK; Hieronymi M; Dare J; Krasemann H; Hitchcock D; Platt A; Amai K; McKelvey T
    Data Brief; 2022 Feb; 40():107759. PubMed ID: 35005148
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing.
    Isenstein EM; Park MH
    J Environ Sci (China); 2014 Sep; 26(9):1831-6. PubMed ID: 25193831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hindcasting eutrophication and changes in temperature and storage volume in a semi-arid reservoir: a multi-decadal Landsat-based assessment.
    Deutsch ES; Alameddine I
    Environ Monit Assess; 2018 Dec; 191(1):41. PubMed ID: 30593606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inversion and distribution of total suspended matter in water based on remote sensing images-A case study on Yuqiao Reservoir, China.
    Cao H; Han L; Li W; Liu Z; Li L
    Water Environ Res; 2021 Apr; 93(4):582-595. PubMed ID: 32954623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Remote Sensing of Chlorophyll-a Concentrations in Lake Hongze Using Long Time Series MERIS Observations].
    Liu G; Li YM; Lü H; Mu M; Lei SH; Wen S; Bi S; Ding XL
    Huan Jing Ke Xue; 2017 Sep; 38(9):3645-3656. PubMed ID: 29965243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.