These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 31082655)
1. Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms. Sharif Bidabadi S; Murray I; Lee GYF; Morris S; Tan T Gait Posture; 2019 Jun; 71():234-240. PubMed ID: 31082655 [TBL] [Abstract][Full Text] [Related]
2. Cognitive driven gait freezing phase detection and classification for neuro-rehabilitated patients using machine learning algorithms. Khamparia A; Gupta D; Maashi M; Mengash HA J Neurosci Methods; 2024 Sep; 409():110183. PubMed ID: 38834145 [TBL] [Abstract][Full Text] [Related]
3. Tracking Foot Drop Recovery Following Lumbar-Spine Surgery, Applying Multiclass Gait Classification Using Machine Learning Techniques. Sharif Bidabadi S; Tan T; Murray I; Lee G Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31167372 [TBL] [Abstract][Full Text] [Related]
4. Assessment of hip abductor power in patients with foot drop: a simple and useful test to differentiate lumbar radiculopathy and peroneal neuropathy. Jeon CH; Chung NS; Lee YS; Son KH; Kim JH Spine (Phila Pa 1976); 2013 Feb; 38(3):257-63. PubMed ID: 22805342 [TBL] [Abstract][Full Text] [Related]
5. The adaptive drop foot stimulator - Multivariable learning control of foot pitch and roll motion in paretic gait. Seel T; Werner C; Schauer T Med Eng Phys; 2016 Nov; 38(11):1205-1213. PubMed ID: 27396367 [TBL] [Abstract][Full Text] [Related]
6. Gait Analysis Using a Support Vector Machine for Lumbar Spinal Stenosis. Hayashi H; Toribatake Y; Murakami H; Yoneyama T; Watanabe T; Tsuchiya H Orthopedics; 2015 Nov; 38(11):e959-64. PubMed ID: 26558674 [TBL] [Abstract][Full Text] [Related]
7. Metric learning for Parkinsonian identification from IMU gait measurements. Cuzzolin F; Sapienza M; Esser P; Saha S; Franssen MM; Collett J; Dawes H Gait Posture; 2017 May; 54():127-132. PubMed ID: 28288333 [TBL] [Abstract][Full Text] [Related]
8. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance. Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287 [TBL] [Abstract][Full Text] [Related]
9. Automated assessment of foot elevation in adults with hereditary spastic paraplegia using inertial measurements and machine learning. Ollenschläger M; Höfner P; Ullrich M; Kluge F; Greinwalder T; Loris E; Regensburger M; Eskofier BM; Winkler J; Gaßner H Orphanet J Rare Dis; 2023 Aug; 18(1):249. PubMed ID: 37644478 [TBL] [Abstract][Full Text] [Related]
10. Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection. Song S; Fernandes NJ; Nordin AD Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766002 [TBL] [Abstract][Full Text] [Related]
11. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns. Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794 [TBL] [Abstract][Full Text] [Related]
12. Discrimination of vestibular function based on inertial sensors. Liu X; Yu S; Zang X; Yu Q; Yang L Comput Methods Programs Biomed; 2022 Feb; 214():106554. PubMed ID: 34896686 [TBL] [Abstract][Full Text] [Related]
13. Support vector machine for classification of walking conditions of persons after stroke with dropped foot. Lau HY; Tong KY; Zhu H Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134 [TBL] [Abstract][Full Text] [Related]
14. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection. Kotiadis D; Hermens HJ; Veltink PH Med Eng Phys; 2010 May; 32(4):287-97. PubMed ID: 20153237 [TBL] [Abstract][Full Text] [Related]
15. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia. Zhang Y; Ma Y Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Postoperative Clinical Recovery of Drop Foot Attributable to Lumbar Degenerative Diseases, via a Bayesian Network. Takenaka S; Aono H Clin Orthop Relat Res; 2017 Mar; 475(3):872-880. PubMed ID: 27913961 [TBL] [Abstract][Full Text] [Related]
17. Prediction of human gait activities using wearable sensors. Halim A; Abdellatif A; Awad MI; Atia MRA Proc Inst Mech Eng H; 2021 Jun; 235(6):676-687. PubMed ID: 33730894 [TBL] [Abstract][Full Text] [Related]
18. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. Hu B; Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM J Biomech; 2018 Apr; 71():37-42. PubMed ID: 29452755 [TBL] [Abstract][Full Text] [Related]
19. Clinching the cause: A review of foot drop secondary to lumbar degenerative diseases. Macki M; Lim S; Elmenini J; Fakih M; Chang V J Neurol Sci; 2018 Dec; 395():126-130. PubMed ID: 30316068 [TBL] [Abstract][Full Text] [Related]
20. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept. Shaikh MF; Salcic Z; Wang KI; Hu AP Med Biol Eng Comput; 2018 Sep; 56(9):1731-1746. PubMed ID: 29524118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]