These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31082806)

  • 21. Broadband Near-Infrared Absorber Based on All Metallic Metasurface.
    Zhang K; Deng R; Song L; Zhang T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable Localized Surface Plasmon Resonance and Broadband Visible Photoresponse of Cu Nanoparticles/ZnO Surfaces.
    de Melo C; Jullien M; Battie Y; En Naciri A; Ghanbaja J; Montaigne F; Pierson JF; Rigoni F; Almqvist N; Vomiero A; Migot S; Mücklich F; Horwat D
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40958-40965. PubMed ID: 30398332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hot Carrier Extraction with Plasmonic Broadband Absorbers.
    Ng C; Cadusch JJ; Dligatch S; Roberts A; Davis TJ; Mulvaney P; Gómez DE
    ACS Nano; 2016 Apr; 10(4):4704-11. PubMed ID: 26982625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical investigation of an ultra-broadband, wide-angle, and polarization-independent metasurface light absorber.
    Zhang K; Deng R; Song L; Zhang T
    Appl Opt; 2020 Oct; 59(28):8878-8885. PubMed ID: 33104573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays.
    Miao J; Hu W; Jing Y; Luo W; Liao L; Pan A; Wu S; Cheng J; Chen X; Lu W
    Small; 2015 May; 11(20):2392-8. PubMed ID: 25630636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices.
    Tagliabue G; Jermyn AS; Sundararaman R; Welch AJ; DuChene JS; Pala R; Davoyan AR; Narang P; Atwater HA
    Nat Commun; 2018 Aug; 9(1):3394. PubMed ID: 30140064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband Perfect Absorber in the Visible Range Based on Metasurface Composite Structures.
    Wang R; Yue S; Zhang Z; Hou Y; Zhao H; Qu S; Li M; Zhang Z
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis and design of InAs nanowire array based ultra broadband perfect absorber.
    Hassan MM; Islam F; Baten MZ; Subrina S
    RSC Adv; 2021 Nov; 11(59):37595-37603. PubMed ID: 35496425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay of hot electrons from localized and propagating plasmons.
    Hoang CV; Hayashi K; Ito Y; Gorai N; Allison G; Shi X; Sun Q; Cheng Z; Ueno K; Goda K; Misawa H
    Nat Commun; 2017 Oct; 8(1):771. PubMed ID: 28974685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel with two-dimension cylinder array.
    Zhou Y; Luo M; Shen S; Zhang H; Pu D; Chen L
    Opt Express; 2018 Oct; 26(21):27482-27491. PubMed ID: 30469814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A broadband and polarization-independent metasurface perfect absorber for hot-electron photoconversion.
    Qian Q; Sun P; Zhang C; Liu T; Chen H; Li F; Cheng L; Zhao L; Li X; Wang C
    Nanoscale; 2022 Oct; 14(39):14801-14806. PubMed ID: 36193682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector.
    Wang L; He SJ; Wang KY; Luo HH; Hu JG; Yu YQ; Xie C; Wu CY; Luo LB
    Nanotechnology; 2018 Dec; 29(50):505203. PubMed ID: 30240364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires via metal quasiparticle film decoration.
    Liu Y; Jiang M; Zhang Z; Li B; Zhao H; Shan C; Shen D
    Nanoscale; 2018 Mar; 10(12):5678-5688. PubMed ID: 29532836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demonstration of SWIR Silicon-Based Photodetection by Using Thin ITO/Au/Au Nanoparticles/n-Si Structure.
    Li X; Deng Z; Ma Z; Jiang Y; Du C; Jia H; Wang W; Chen H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.
    Dao TD; Han G; Arai N; Nabatame T; Wada Y; Hoang CV; Aono M; Nagao T
    Phys Chem Chem Phys; 2015 Mar; 17(11):7395-403. PubMed ID: 25700130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broadband/multiband absorption through surface plasmon engineering in graphene-wrapped nanospheres.
    Raad SH; Atlasbaf Z
    Appl Opt; 2020 Oct; 59(28):8909-8917. PubMed ID: 33104577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broad-Band High-Sensitivity ZnO Colloidal Quantum Dots/Self-Assembled Au Nanoantennas Heterostructures Photodetectors.
    Liu S; Li MY; Su D; Yu M; Kan H; Liu H; Wang X; Jiang S
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32516-32525. PubMed ID: 30165735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.