These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31083496)

  • 1. Experimental and Numerical Investigations on the Flow Characteristics within Hydrodynamic Entrance Regions in Microchannels.
    Li H; Huang B; Wu M
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31083496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow Characteristics of the Entrance Region with Roughness Effect within Rectangular Microchannels.
    Li H; Li Y; Huang B; Xu T
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31881751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of Flows via CFD in Microchannels for Characterizing Entrance Region and Developing New Correlations for Hydrodynamic Entrance Length.
    Ray DR; Das DK
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime.
    Ma N; Duan Z; Ma H; Su L; Liang P; Ning X; He B; Zhang X
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid Flow and Entropy Generation Analysis of Al
    Ma H; Duan Z; Su L; Ning X; Bai J; Lv X
    Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Numerical Methodology Based on CFD and Porous Medium for Thermal Performance Evaluation of Gas to Gas Micro Heat Exchanger.
    Rehman D; Joseph J; Morini GL; Delanaye M; Brandner J
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impinging laminar jets at moderate Reynolds numbers and separation distances.
    Bergthorson JM; Sone K; Mattner TW; Dimotakis PE; Goodwin DG; Meiron DI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066307. PubMed ID: 16486059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration profiles of ions and particles under hydrodynamic focusing in Y-shaped square microchannel.
    Sato N; Kawashima D; Takei M
    Sci Rep; 2021 Jan; 11(1):2585. PubMed ID: 33510410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsteady entrance flow development in a straight tube.
    He X; Ku DN
    J Biomech Eng; 1994 Aug; 116(3):355-60. PubMed ID: 7799639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of a multi-inlet microfluidic device for biosensing purposes in osteoporosis management.
    Khashayar P; Okhovat A; Adibi H; Windels J; Amoabediny G; Larijani B; Vanfleteren J
    J Diabetes Metab Disord; 2019 Dec; 18(2):341-348. PubMed ID: 31890659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenge in particle delivery to cells in a microfluidic device.
    Moghadas H; Saidi MS; Kashaninejad N; Nguyen NT
    Drug Deliv Transl Res; 2018 Jun; 8(3):830-842. PubMed ID: 29270808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental validation of a computational fluid dynamics model using micro-particle image velocimetry of the irrigation flow in confluent canals.
    Rito Pereira M; Silva G; Semiao V; Silverio V; Martins JNR; Pascoal-Faria P; Alves N; Dias JR; Ginjeira A
    Int Endod J; 2022 Dec; 55(12):1394-1403. PubMed ID: 36040378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.
    Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA
    J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation and computational modeling of hydrodynamics in bifurcating microchannels.
    Janakiraman V; Sastry S; Kadambi JR; Baskaran H
    Biomed Microdevices; 2008 Jun; 10(3):355-65. PubMed ID: 18175219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A passive Stokes flow rectifier for Newtonian fluids.
    Mehboudi A; Yeom J
    Sci Rep; 2021 May; 11(1):10182. PubMed ID: 33986400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparison of Data Reduction Methods for Average Friction Factor Calculation of Adiabatic Gas Flows in Microchannels.
    Rehman D; Morini GL; Hong C
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30823482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid through a rough circular microchannel with surface charge-dependent slip.
    Li D; Dong J; Li H
    Electrophoresis; 2024 May; ():. PubMed ID: 38809093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.