These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31083500)

  • 1. An Innovative Ultrasonic Apparatus and Technology for Diagnosis of Freeze-Drying Process.
    Cheng CC; Tseng YH; Huang SC
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel real-time diagnosis of the freezing process using an ultrasonic transducer.
    Tseng YH; Cheng CC; Cheng HP; Lee D
    Sensors (Basel); 2015 May; 15(5):10332-49. PubMed ID: 25946629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.
    De Meyer L; Van Bockstal PJ; Corver J; Vervaet C; Remon JP; De Beer T
    Int J Pharm; 2015 Dec; 496(1):75-85. PubMed ID: 25981618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying.
    Cao X; Zhang M; Mujumdar AS; Zhong Q; Wang Z
    Ultrason Sonochem; 2018 Jan; 40(Pt A):333-340. PubMed ID: 28946432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Temperature during Freeze-Drying Process on the Viability of
    Sang Y; Wang J; Zhang Y; Gao H; Ge S; Feng H; Zhang Y; Ren F; Wen P; Wang R
    Microorganisms; 2023 Jan; 11(1):. PubMed ID: 36677474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Pulsed Electric Field Pre-Treatment and the Freezing Methods on the Kinetics of the Freeze-Drying Process of Apple and Its Selected Physical Properties.
    Nowak D; Jakubczyk E
    Foods; 2022 Aug; 11(16):. PubMed ID: 36010407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.
    Ma Y; Wu X; Zhang Q; Giovanni V; Meng X
    Saudi J Biol Sci; 2018 May; 25(4):724-732. PubMed ID: 29740237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools.
    De Beer TR; Vercruysse P; Burggraeve A; Quinten T; Ouyang J; Zhang X; Vervaet C; Remon JP; Baeyens WR
    J Pharm Sci; 2009 Sep; 98(9):3430-46. PubMed ID: 19130604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physico-chemical basis for the freeze-drying process.
    MacKenzie AP
    Dev Biol Stand; 1976 Oct; 36():51-67. PubMed ID: 1030437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor.
    Roy ML; Pikal MJ
    J Parenter Sci Technol; 1989; 43(2):60-6. PubMed ID: 2709237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A NIR-Based Study of Desorption Kinetics during Continuous Spin Freeze-Drying.
    Leys L; Nuytten G; Lammens J; Van Bockstal PJ; Corver J; Vervaet C; De Beer T
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Optimization of process of sodium aescinate lyophilized powder].
    Shi ZH; Chen LJ; Huang WF; Liu MM; Liu XP
    Zhong Yao Cai; 2014 Jul; 37(7):1265-9. PubMed ID: 25566665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects on biological materials of freezing and drying by vacuum sublimation. I. Development and testing of apparatus.
    GREIFF D; PINKERTON H
    J Exp Med; 1954 Jul; 100(1):81-8. PubMed ID: 13163340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NIR spectroscopy for the in-line monitoring of a multicomponent formulation during the entire freeze-drying process.
    Rosas JG; de Waard H; De Beer T; Vervaet C; Remon JP; Hinrichs WL; Frijlink HW; Blanco M
    J Pharm Biomed Anal; 2014 Aug; 97():39-46. PubMed ID: 24814994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; Corver J; De Meyer L; Vervaet C; De Beer T
    Anal Chem; 2018 Nov; 90(22):13591-13599. PubMed ID: 30339362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of freezing temperatures prior to freeze-drying on viability of yeasts and lactic acid bacteria isolated from wine.
    Polo L; Mañes-Lázaro R; Olmeda I; Cruz-Pio LE; Medina Á; Ferrer S; Pardo I
    J Appl Microbiol; 2017 Jun; 122(6):1603-1614. PubMed ID: 28375570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-drying of Lactobacillus coryniformis Si3--effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties.
    Schoug A; Olsson J; Carlfors J; Schnürer J; Håkansson S
    Cryobiology; 2006 Aug; 53(1):119-27. PubMed ID: 16756971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-drying of proteins: some emerging concerns.
    Roy I; Gupta MN
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):165-77. PubMed ID: 15032737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.
    Bosca S; Barresi AA; Fissore D
    Eur J Pharm Biopharm; 2013 Oct; 85(2):253-62. PubMed ID: 23631849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.