These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 31083575)

  • 1. Mitochondrial Transport and Turnover in the Pathogenesis of Amyotrophic Lateral Sclerosis.
    Granatiero V; Manfredi G
    Biology (Basel); 2019 May; 8(2):. PubMed ID: 31083575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miro1 deficiency in amyotrophic lateral sclerosis.
    Zhang F; Wang W; Siedlak SL; Liu Y; Liu J; Jiang K; Perry G; Zhu X; Wang X
    Front Aging Neurosci; 2015; 7():100. PubMed ID: 26074815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control.
    Palomo GM; Manfredi G
    Brain Res; 2015 May; 1607():36-46. PubMed ID: 25301687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo.
    Sung H; Tandarich LC; Nguyen K; Hollenbeck PJ
    J Neurosci; 2016 Jul; 36(28):7375-91. PubMed ID: 27413149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis.
    Benson BC; Shaw PJ; Azzouz M; Highley JR; Hautbergue GM
    Front Neurosci; 2021; 15():783624. PubMed ID: 35002606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Link between Oxidative Stress, Redox Status, Bioenergetics and Mitochondria in the Pathophysiology of ALS.
    Obrador E; Salvador-Palmer R; López-Blanch R; Jihad-Jebbar A; Vallés SL; Estrela JM
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34198557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of mitochondria in amyotrophic lateral sclerosis.
    Smith EF; Shaw PJ; De Vos KJ
    Neurosci Lett; 2019 Sep; 710():132933. PubMed ID: 28669745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review: The role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis.
    Duffy LM; Chapman AL; Shaw PJ; Grierson AJ
    Neuropathol Appl Neurobiol; 2011 Jun; 37(4):336-52. PubMed ID: 21299590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis.
    Shi P; Wei Y; Zhang J; Gal J; Zhu H
    J Alzheimers Dis; 2010; 20 Suppl 2():S311-24. PubMed ID: 20463400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removing dysfunctional mitochondria from axons independent of mitophagy under pathophysiological conditions.
    Lin MY; Cheng XT; Xie Y; Cai Q; Sheng ZH
    Autophagy; 2017 Oct; 13(10):1792-1794. PubMed ID: 28812939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis.
    Ruffoli R; Bartalucci A; Frati A; Fornai F
    Front Cell Neurosci; 2015; 9():341. PubMed ID: 26388731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of insulin-like growth factor 1 in ALS cell and mouse models: A mitochondrial protector.
    Wen D; Cui C; Duan W; Wang W; Wang Y; Liu Y; Li Z; Li C
    Brain Res Bull; 2019 Jan; 144():1-13. PubMed ID: 30414993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis.
    Magrané J; Manfredi G
    Antioxid Redox Signal; 2009 Jul; 11(7):1615-26. PubMed ID: 19344253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis.
    Perera ND; Turner BJ
    Neurochem Res; 2016 Mar; 41(3):544-53. PubMed ID: 26202426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Role of axonal transport in ALS].
    Tanaka F; Ikenaka K; Sobue G
    Rinsho Shinkeigaku; 2011 Nov; 51(11):1189-91. PubMed ID: 22277530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial quality control in amyotrophic lateral sclerosis: towards a common pathway?
    Khalil B; Liévens JC
    Neural Regen Res; 2017 Jul; 12(7):1052-1061. PubMed ID: 28852382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic mice with human mutant genes causing Parkinson's disease and amyotrophic lateral sclerosis provide common insight into mechanisms of motor neuron selective vulnerability to degeneration.
    Martin LJ
    Rev Neurosci; 2007; 18(2):115-36. PubMed ID: 17593875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1.
    Jaarsma D; Haasdijk ED; Grashorn JA; Hawkins R; van Duijn W; Verspaget HW; London J; Holstege JC
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):623-43. PubMed ID: 11114261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria in amyotrophic lateral sclerosis: a trigger and a target.
    Dupuis L; Gonzalez de Aguilar JL; Oudart H; de Tapia M; Barbeito L; Loeffler JP
    Neurodegener Dis; 2004; 1(6):245-54. PubMed ID: 16908975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Organization of Mitochondrial Quality Control and Life Cycle in the Nervous System In Vivo in the Absence of PINK1.
    Devireddy S; Liu A; Lampe T; Hollenbeck PJ
    J Neurosci; 2015 Jun; 35(25):9391-401. PubMed ID: 26109662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.