These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31083603)

  • 1. Tangential Flow Microfiltration for Viral Separation and Concentration.
    Wang Y; Keller K; Cheng X
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31083603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical evaluation and experimental validation of cross-flow microfiltration device design.
    De Jesús Vega M; Wakim J; Orbey N; Barry C
    Biomed Microdevices; 2019 Feb; 21(1):21. PubMed ID: 30790088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A double tangential flow filtration-based microfluidic device for highly efficient separation and enrichment of exosomes.
    Hua X; Zhu Q; Liu Y; Zhou S; Huang P; Li Q; Liu S
    Anal Chim Acta; 2023 Jun; 1258():341160. PubMed ID: 37087290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tangential flow microfiltration and ultrafiltration for human influenza A virus concentration and purification.
    Wickramasinghe SR; Kalbfuss B; Zimmermann A; Thom V; Reichl U
    Biotechnol Bioeng; 2005 Oct; 92(2):199-208. PubMed ID: 16041807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bubble- and clogging-free microfluidic particle separation platform with multi-filtration.
    Cheng Y; Wang Y; Ma Z; Wang W; Ye X
    Lab Chip; 2016 Nov; 16(23):4517-4526. PubMed ID: 27792227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Microfluidic Device by Integrating a Porous Membrane and Heterostructured Nanoporous Particles for Biomolecule Cleaning.
    Fan JB; Luo J; Luo Z; Song Y; Wang Z; Meng J; Wang B; Zhang S; Zheng Z; Chen X; Wang S
    ACS Nano; 2019 Jul; 13(7):8374-8381. PubMed ID: 31283177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic devices with templated regular macroporous structures for HIV viral capture.
    Surawathanawises K; Kundrod K; Cheng X
    Analyst; 2016 Mar; 141(5):1669-77. PubMed ID: 26899457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow induced particle separation and collection through linear array pillar microfluidics device.
    Balyan P; Saini D; Das S; Kumar D; Agarwal A
    Biomicrofluidics; 2020 Mar; 14(2):024103. PubMed ID: 32206158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of hollow fiber tangential flow filtration for the recovery and concentration of HIV virus-like particles produced in insect cells.
    Negrete A; Pai A; Shiloach J
    J Virol Methods; 2014 Jan; 195():240-6. PubMed ID: 24157258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropatterned macroporous structures in microfluidic devices for viral separation from whole blood.
    Surawathanawises K; Wiedorn V; Cheng X
    Analyst; 2017 Jun; 142(12):2220-2228. PubMed ID: 28555231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scale-down cross-flow filtration technology for biopharmaceuticals and the associated theory.
    Guo S; Kiefer H; Zhou D; Guan YH; Wang S; Wang H; Lu Y; Zhuang Y
    J Biotechnol; 2016 Mar; 221():25-31. PubMed ID: 26795357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New technical concept for alternating tangential flow filtration in biotechnological cell separation processes.
    Weinberger ME; Schoch L; Kulozik U
    Biotechnol Prog; 2023 Mar; 39(2):e3309. PubMed ID: 36308420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tangential flow microfluidics for the capture and release of nanoparticles and extracellular vesicles on conventional and ultrathin membranes.
    Dehghani M; Lucas K; Flax J; McGrath J; Gaborski T
    Adv Mater Technol; 2019 Nov; 4(11):. PubMed ID: 32395607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device.
    Li C; Dong X; Qin J; Lin B
    Anal Chim Acta; 2009 Apr; 640(1-2):93-9. PubMed ID: 19362626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood.
    Cheng Y; Ye X; Ma Z; Xie S; Wang W
    Biomicrofluidics; 2016 Jan; 10(1):014118. PubMed ID: 26909124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic immunodetection of cancer cells via site-specific microcontact printing of antibodies on nanoporous surface.
    Ng E; Hoshino K; Zhang X
    Methods; 2013 Oct; 63(3):266-75. PubMed ID: 24012763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis on energy consuming of polypropylene tubular membrane microfiltration in rotating tangential flow].
    Wang C; Hou F; Chen W
    Huan Jing Ke Xue; 2002 May; 23(3):59-62. PubMed ID: 12145938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous separation of particles using a microfluidic device equipped with flow rate control valves.
    Sai Y; Yamada M; Yasuda M; Seki M
    J Chromatogr A; 2006 Sep; 1127(1-2):214-20. PubMed ID: 16890945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes.
    Krafft B; Panneerselvam R; Geissler D; Belder D
    Anal Bioanal Chem; 2020 Jan; 412(2):267-277. PubMed ID: 31797018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.