BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 31083702)

  • 1. Soil nutrient adequacy for optimal cassava growth, implications on cyanogenic glucoside production: A case of konzo-affected Mtwara region, Tanzania.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2019; 14(5):e0216708. PubMed ID: 31083702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Farmers' perceptions on the causes of cassava root bitterness: A case of konzo-affected Mtwara region, Tanzania.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2019; 14(4):e0215527. PubMed ID: 30998724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Etiology of Konzo, epidemic spastic paraparesis associated with cyanogenic glycosides in cassava: role of thiamine deficiency?
    Adamolekun B
    J Neurol Sci; 2010 Sep; 296(1-2):30-3. PubMed ID: 20619859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root.
    Ogbonna AC; Braatz de Andrade LR; Rabbi IY; Mueller LA; Jorge de Oliveira E; Bauchet GJ
    Plant J; 2021 Feb; 105(3):754-770. PubMed ID: 33164279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba.
    Hernández T; Lundquist P; Oliveira L; Pérez Cristiá R; Rodriguez E; Rosling H
    Nat Toxins; 1995; 3(2):114-7. PubMed ID: 7613736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
    Jørgensen K; Bak S; Busk PK; Sørensen C; Olsen CE; Puonti-Kaerlas J; Møller BL
    Plant Physiol; 2005 Sep; 139(1):363-74. PubMed ID: 16126856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geographical and seasonal association between linamarin and cyanide exposure from cassava and the upper motor neurone disease konzo in former Zaire.
    Banea-Mayambu JP; Tylleskär T; Gitebo N; Matadi N; Gebre-Medhin M; Rosling H
    Trop Med Int Health; 1997 Dec; 2(12):1143-51. PubMed ID: 9438470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
    Gleadow R; Pegg A; Blomstedt CK
    J Exp Bot; 2016 Oct; 67(18):5403-5413. PubMed ID: 27506218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low cyanide exposure from consumption of cassava in Dar es Salaam, Tanzania.
    Mlingi N; Abrahamsson M; Yuen J; Gebre-Medhin M; Rosling H
    Nat Toxins; 1998; 6(2):67-72. PubMed ID: 9888632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appearance of konzo in South-Kivu, a wartorn area in the Democratic Republic of Congo.
    Chabwine JN; Masheka C; Balol'ebwami Z; Maheshe B; Balegamire S; Rutega B; Wa Lola M; Mutendela K; Bonnet MJ; Shangalume O; Balegamire JM; Nemery B
    Food Chem Toxicol; 2011 Mar; 49(3):644-9. PubMed ID: 20691241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary exposure and risk assessment of cyanide via cassava consumption in Chinese population.
    Zhong Y; Xu T; Wu X; Li K; Zhang P; Ji S; Li S; Zheng L; Lu B
    Food Chem; 2021 Aug; 354():129405. PubMed ID: 33770563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Konzo and continuing cyanide intoxication from cassava in Mozambique.
    Cliff J; Muquingue H; Nhassico D; Nzwalo H; Bradbury JH
    Food Chem Toxicol; 2011 Mar; 49(3):631-5. PubMed ID: 20654676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO.
    Gleadow RM; Evans JR; McCaffery S; Cavagnaro TR
    Plant Biol (Stuttg); 2009 Nov; 11 Suppl 1():76-82. PubMed ID: 19778371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower sulfurtransferase detoxification rates of cyanide in konzo-A tropical spastic paralysis linked to cassava cyanogenic poisoning.
    Kambale KJ; Ali ER; Sadiki NH; Kayembe KP; Mvumbi LG; Yandju DL; Boivin MJ; Boss GR; Stadler DD; Lambert WE; Lasarev MR; Okitundu LA; Mumba Ngoyi D; Banea JP; Tshala-Katumbay DD
    Neurotoxicology; 2017 Mar; 59():256-262. PubMed ID: 27246648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.
    Balyejusa Kizito E; Rönnberg-Wästljung AC; Egwang T; Gullberg U; Fregene M; Westerbergh A
    Hereditas; 2007 Sep; 144(4):129-36. PubMed ID: 17850597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D; Sayre R
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of wetting method in Africa to reduce cyanide poisoning and konzo from cassava.
    Bradbury JH; Cliff J; Denton IC
    Food Chem Toxicol; 2011 Mar; 49(3):539-42. PubMed ID: 20510334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of wetting method for control of konzo and reduction of cyanide poisoning by removal of cyanogens from cassava flour.
    Banea JP; Bradbury JH; Mandombi C; Nahimana D; Denton IC; Kuwa N; Tshala Katumbay D
    Food Nutr Bull; 2014 Mar; 35(1):28-32. PubMed ID: 24791576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations in the chemical composition of cassava ( Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation.
    Burns AE; Gleadow RM; Zacarias AM; Cuambe CE; Miller RE; Cavagnaro TR
    J Agric Food Chem; 2012 May; 60(19):4946-56. PubMed ID: 22515684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.