These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31083898)

  • 1. Wide-Angle Broadband Antireflection Coatings Prepared by Atomic Layer Deposition.
    Pfeiffer K; Ghazaryan L; Schulz U; Szeghalmi A
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21887-21894. PubMed ID: 31083898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grass-like Alumina with Low Refractive Index for Scalable, Broadband, Omnidirectional Antireflection Coatings on Glass Using Atomic Layer Deposition.
    Kauppinen C; Isakov K; Sopanen M
    ACS Appl Mater Interfaces; 2017 May; 9(17):15038-15043. PubMed ID: 28398715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide-angle broadband antireflection coatings based on boomerang-like alumina nanostructures in visible region.
    Omrani M; Malekmohammad M; Zabolian H
    Sci Rep; 2022 Jan; 12(1):904. PubMed ID: 35042946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wide-angle broadband antireflection coatings with nano-taper hydrated alumina film.
    Wang H; Yang C; Wang Y; Yuan W; Zheng T; Chen X; Liu Y; Zhang Y; Shen W
    Opt Express; 2022 Aug; 30(16):28922-28931. PubMed ID: 36299078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband omnidirectional antireflection coatings optimized by genetic algorithm.
    Poxson DJ; Schubert MF; Mont FW; Schubert EF; Kim JK
    Opt Lett; 2009 Mar; 34(6):728-30. PubMed ID: 19282913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance optimization of 193 nm antireflective coatings with wide incident angle ranges on strongly curved spherical substrates.
    Liu C; Kong M; Li B
    Opt Express; 2018 Jul; 26(15):19524-19533. PubMed ID: 30114123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antireflection coating with consistent near-neutral color on complex-shaped substrates prepared by ALD.
    Pfeiffer K; Dewald W; Szeghalmi A
    Opt Lett; 2019 Jul; 44(13):3270-3273. PubMed ID: 31259938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings.
    Gao L; He J
    J Colloid Interface Sci; 2013 Jun; 400():24-30. PubMed ID: 23582903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region.
    Zhang L; Li Y; Sun J; Shen J
    J Colloid Interface Sci; 2008 Mar; 319(1):302-8. PubMed ID: 18068180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Durable Broadband and Omnidirectional Ultra-antireflective Surfaces.
    Li Z; Lin J; Liu Z; Feng S; Liu Y; Wang C; Liu Y; Yang S
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40180-40188. PubMed ID: 30378430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformal antireflection coatings for optical dome covers by atomic layer deposition.
    Gerold K; Beladiya V; Paul P; Kästner D; Saarniheimo M; Niiranen K; Schröder S; Szeghalmi A
    Appl Opt; 2023 Mar; 62(7):B92-B96. PubMed ID: 37132891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow Rodlike MgF
    Bao L; Ji Z; Wang H; Chen R
    Langmuir; 2017 Jun; 33(25):6240-6247. PubMed ID: 28602095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low polarization-sensitive ultra-broadband anti-reflection coatings with improved reliability.
    Yang YT; Cai QY; Liu DQ; Gao LS; Zhang HT; Peng L; Hu ET; Liu BJ; Luo HH; Zhang RJ; Zheng YX
    Opt Express; 2023 Jul; 31(16):25477-25489. PubMed ID: 37710433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal antireflection coatings for substrates for the visible spectral region.
    Dobrowolski JA; Sullivan BT
    Appl Opt; 1996 Sep; 35(25):4993-7. PubMed ID: 21102926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-Sided, Omnidirectional γ-AlOOH Hierarchical Nanostructures: Imparting Enhanced Antireflective Properties with Self-Cleaning Capacity for Optical Devices.
    Halan Joghee S; Uthandi KM; Singh N; Katti S; Kumar P; Kaur MP; Pullithadathil B
    Langmuir; 2021 Jun; 37(23):6953-6966. PubMed ID: 34060322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally stable antireflective coatings based on nanoporous organosilicate thin films.
    Kim S; Cho J; Char K
    Langmuir; 2007 Jun; 23(12):6737-43. PubMed ID: 17477553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of the waveguide resonance in a periodically patterned high refractive index broadband antireflection coating.
    Stenzel O; Wilbrandt S; Chen X; Schlegel R; Coriand L; Duparré A; Zeitner U; Benkenstein T; Wächter C
    Appl Opt; 2014 May; 53(14):3147-56. PubMed ID: 24922038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and realization of antireflection coatings for the visible and the infrared based on mesoporous SiO
    Zhao W; Jia H; Wang Y; Wang Q; Wu H; Wang B
    Appl Opt; 2019 Mar; 58(9):2385-2392. PubMed ID: 31044940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors.
    Jayasinghe RC; Perera AG; Zhu H; Zhao Y
    Opt Lett; 2012 Oct; 37(20):4302-4. PubMed ID: 23073444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-sided optical coating of strongly curved glass by atomic layer deposition.
    Gao LS; Cai QY; Hu ET; Zhou J; Li YP; Luo HH; Liu BJ; Zheng YX; Liu DQ
    Opt Express; 2021 Apr; 29(9):13815-13828. PubMed ID: 33985110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.