BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 31083944)

  • 1. Formation of α-Dicarbonyls from Dairy Related Carbohydrates with and without Nα-Acetyl-l-Lysine during Incubation at 40 and 50 °C.
    Zhang W; Poojary MM; Olsen K; Ray CA; Lund MN
    J Agric Food Chem; 2019 Jun; 67(22):6350-6358. PubMed ID: 31083944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Maillard Reactions by Replacing Galactose with Galacto-Oligosaccharides in Casein Model Systems.
    Zhang W; Ray C; Poojary MM; Jansson T; Olsen K; Lund MN
    J Agric Food Chem; 2019 Jan; 67(3):875-886. PubMed ID: 30582810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitation of α-Dicarbonyls and Advanced Glycation Endproducts in Conventional and Lactose-Hydrolyzed Ultrahigh Temperature Milk during 1 Year of Storage.
    Zhang W; Poojary MM; Rauh V; Ray CA; Olsen K; Lund MN
    J Agric Food Chem; 2019 Nov; 67(46):12863-12874. PubMed ID: 31670949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-deoxygalactosone, a "new" 1,2-dicarbonyl compound in milk products.
    Hellwig M; Degen J; Henle T
    J Agric Food Chem; 2010 Oct; 58(19):10752-60. PubMed ID: 20822095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure- and concentration-specific assessment of the physiological reactivity of α-dicarbonyl glucose degradation products in peritoneal dialysis fluids.
    Distler L; Georgieva A; Kenkel I; Huppert J; Pischetsrieder M
    Chem Res Toxicol; 2014 Aug; 27(8):1421-30. PubMed ID: 25033248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limitation of Maillard Reactions in Lactose-Reduced UHT Milk via Enzymatic Conversion of Lactose into Galactooligosaccharides during Production.
    Zhang W; Poojary MM; Rauh V; Ray CA; Olsen K; Lund MN
    J Agric Food Chem; 2020 Mar; 68(11):3568-3575. PubMed ID: 32065525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Fructo-, Inulin-, and Galacto-Oligosaccharides on the Maillard Reaction Products in Model Systems with Whey Protein.
    Nomi Y; Sato T; Mori Y; Matsumoto H
    J Agric Food Chem; 2022 Jul; 70(29):9154-9165. PubMed ID: 35849535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of glucose: reinvestigation of reactive alpha-Dicarbonyl compounds.
    Gobert J; Glomb MA
    J Agric Food Chem; 2009 Sep; 57(18):8591-7. PubMed ID: 19711949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose.
    Wells-Knecht KJ; Zyzak DV; Litchfield JE; Thorpe SR; Baynes JW
    Biochemistry; 1995 Mar; 34(11):3702-9. PubMed ID: 7893666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal.
    Lederer MO; Klaiber RG
    Bioorg Med Chem; 1999 Nov; 7(11):2499-507. PubMed ID: 10632059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C.
    Hrynets Y; Ndagijimana M; Betti M
    J Agric Food Chem; 2015 Jul; 63(27):6249-61. PubMed ID: 26114422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contents of ɑ-dicarbonyl compounds in commercial black tea and affected by the processing.
    Zhu H; Niu L; Zhu L; Yuan H; Kilmartin PA; Jiang Y
    Food Res Int; 2024 Feb; 178():113876. PubMed ID: 38309897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.
    Kanzler C; Schestkowa H; Haase PT; Kroh LW
    J Agric Food Chem; 2017 Oct; 65(40):8957-8965. PubMed ID: 28880081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations of Major α-Dicarbonyl Content in U.S. Honey of Different Geographical Origins.
    Nyarko K; Greenlief CM
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetics of Maillard reaction in lactose-hydrolysed milk powder and related systems containing carbohydrate mixtures.
    Naranjo GB; Pereyra Gonzales AS; Leiva GE; Malec LS
    Food Chem; 2013 Dec; 141(4):3790-5. PubMed ID: 23993550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Browning Potential of C
    Haase PT; Kanzler C; Hildebrandt J; Kroh LW
    J Agric Food Chem; 2017 Mar; 65(9):1924-1931. PubMed ID: 28198624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of galactooligosaccharides and furosine in special dairy products designed for elderly people.
    Montilla A; Megías-Pérez R; Olano A; Villamiel M
    Food Chem; 2015 Apr; 172():481-5. PubMed ID: 25442582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Major Chromophore Arising from Glucose Degradation and Oxidative Stress Occurrence during Lens Proteins Glycation Induced by Glucose.
    Ávila F; Schmeda-Hirschmann G; Silva E
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29271874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal cations promote α-dicarbonyl formation in glucose-containing peritoneal dialysis fluids.
    Gensberger-Reigl S; Auditore A; Huppert J; Pischetsrieder M
    Glycoconj J; 2021 Jun; 38(3):319-329. PubMed ID: 33283256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.