These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 31083978)
1. Molecular Engineering of the Cellulose-Poly(Caprolactone) Bio-Nanocomposite Interface by Reactive Amphiphilic Copolymer Nanoparticles. Kaldéus T; Träger A; Berglund LA; Malmström E; Lo Re G ACS Nano; 2019 Jun; 13(6):6409-6420. PubMed ID: 31083978 [TBL] [Abstract][Full Text] [Related]
2. Physical tuning of cellulose-polymer interactions utilizing cationic block copolymers based on PCL and quaternized PDMAEMA. Utsel S; Bruce C; Pettersson T; Fogelström L; Carlmark A; Malmström E; Wågberg L ACS Appl Mater Interfaces; 2012 Dec; 4(12):6796-807. PubMed ID: 23157287 [TBL] [Abstract][Full Text] [Related]
3. Strategy for the Improvement of the Mechanical Properties of Cellulose Nanofiber-Reinforced High-Density Polyethylene Nanocomposites Using Diblock Copolymer Dispersants. Sakakibara K; Moriki Y; Yano H; Tsujii Y ACS Appl Mater Interfaces; 2017 Dec; 9(50):44079-44087. PubMed ID: 29185701 [TBL] [Abstract][Full Text] [Related]
4. Effect of loadings of nanocellulose on the significantly improved crystallization and mechanical properties of biodegradable poly(ε-caprolactone). Li Y; Han C; Yu Y; Xiao L Int J Biol Macromol; 2020 Mar; 147():34-45. PubMed ID: 31923509 [TBL] [Abstract][Full Text] [Related]
5. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268 [TBL] [Abstract][Full Text] [Related]
7. Surface Engineering of Cellulose Nanofiber by Adsorption of Diblock Copolymer Dispersant for Green Nanocomposite Materials. Sakakibara K; Yano H; Tsujii Y ACS Appl Mater Interfaces; 2016 Sep; 8(37):24893-900. PubMed ID: 27559606 [TBL] [Abstract][Full Text] [Related]
8. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171 [TBL] [Abstract][Full Text] [Related]
9. Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. Wang M; Olszewska A; Walther A; Malho JM; Schacher FH; Ruokolainen J; Ankerfors M; Laine J; Berglund LA; Osterberg M; Ikkala O Biomacromolecules; 2011 Jun; 12(6):2074-81. PubMed ID: 21517114 [TBL] [Abstract][Full Text] [Related]
10. Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites. Yao K; Huang S; Tang H; Xu Y; Buntkowsky G; Berglund LA; Zhou Q ACS Appl Mater Interfaces; 2017 Jun; 9(23):20169-20178. PubMed ID: 28530799 [TBL] [Abstract][Full Text] [Related]
11. Polyethylene cellulose nanofibrils nanocomposites. Maia THS; Larocca NM; Beatrice CAG; de Menezes AJ; de Freitas Siqueira G; Pessan LA; Dufresne A; França MP; de Almeida Lucas A Carbohydr Polym; 2017 Oct; 173():50-56. PubMed ID: 28732893 [TBL] [Abstract][Full Text] [Related]
12. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. Boujemaoui A; Cobo Sanchez C; Engström J; Bruce C; Fogelström L; Carlmark A; Malmström E ACS Appl Mater Interfaces; 2017 Oct; 9(40):35305-35318. PubMed ID: 28895728 [TBL] [Abstract][Full Text] [Related]
13. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660 [TBL] [Abstract][Full Text] [Related]
14. Swelling-based preparation of polypropylene nanocomposite with non-functionalized cellulose nanofibrils. Kim DW; Han S; Lee H; Shin J; Choi SQ Carbohydr Polym; 2022 Feb; 277():118847. PubMed ID: 34893257 [TBL] [Abstract][Full Text] [Related]
15. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Babaee M; Jonoobi M; Hamzeh Y; Ashori A Carbohydr Polym; 2015 Nov; 132():1-8. PubMed ID: 26256317 [TBL] [Abstract][Full Text] [Related]
16. Cellulose Nanofibrils Dewatered with Poly(Lactic Acid) for Improved Bio-Polymer Nanocomposite Processing. Collins A; Tajvidi M Nanomaterials (Basel); 2024 Aug; 14(17):. PubMed ID: 39269081 [TBL] [Abstract][Full Text] [Related]
17. Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose-Poly(methyl methacrylate) Interface. Boujemaoui A; Ansari F; Berglund LA Biomacromolecules; 2019 Feb; 20(2):598-607. PubMed ID: 30047261 [TBL] [Abstract][Full Text] [Related]
19. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites. Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741 [TBL] [Abstract][Full Text] [Related]
20. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Yu Z; Alsammarraie FK; Nayigiziki FX; Wang W; Vardhanabhuti B; Mustapha A; Lin M Food Res Int; 2017 Sep; 99(Pt 1):166-172. PubMed ID: 28784473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]