These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31084030)

  • 1. Dynamic Strengthening of Carbon Nanotube Fibers under Extreme Mechanical Impulses.
    Xie W; Zhang R; Headrick RJ; Taylor LW; Kooi S; Pasquali M; Müftü S; Lee JH
    Nano Lett; 2019 Jun; 19(6):3519-3526. PubMed ID: 31084030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube fibers with dynamic strength up to 14 GPa.
    Zhang X; Lei X; Jia X; Sun T; Luo J; Xu S; Li L; Yan D; Shao Y; Yong Z; Zhang Y; Wu X; Gao E; Jian M; Zhang J
    Science; 2024 Jun; 384(6702):1318-1323. PubMed ID: 38900888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations.
    Cornwell CF; Welch CR
    J Chem Phys; 2011 May; 134(20):204708. PubMed ID: 21639468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme Dynamic Performance of Nanofiber Mats under Supersonic Impacts Mediated by Interfacial Hydrogen Bonds.
    Cai J; Griesbach C; Thevamaran R
    ACS Nano; 2021 Dec; 15(12):19945-19955. PubMed ID: 34870968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment.
    Miaudet P; Badaire S; Maugey M; Derré A; Pichot V; Launois P; Poulin P; Zakri C
    Nano Lett; 2005 Nov; 5(11):2212-5. PubMed ID: 16277455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance carbon nanotube fiber.
    Koziol K; Vilatela J; Moisala A; Motta M; Cunniff P; Sennett M; Windle A
    Science; 2007 Dec; 318(5858):1892-5. PubMed ID: 18006708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties.
    Hossain MM; Islam MA; Shima H; Hasan M; Lee M
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5530-5542. PubMed ID: 28106367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous carbon nanotube reinforced composites.
    Ci L; Suhr J; Pushparaj V; Zhang X; Ajayan PM
    Nano Lett; 2008 Sep; 8(9):2762-6. PubMed ID: 18680351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology dependent field emission of acid-spun carbon nanotube fibers.
    Fairchild SB; Boeckl J; Back TC; Ferguson JB; Koerner H; Murray PT; Maruyama B; Lange MA; Cahay MM; Behabtu N; Young CC; Pasquali M; Lockwood NP; Averett KL; Gruen G; Tsentalovich DE
    Nanotechnology; 2015 Mar; 26(10):105706. PubMed ID: 25694166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.
    Ryu SW; Hwang JW; Hong SH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning array morphology for high-strength carbon-nanotube fibers.
    Zheng L; Sun G; Zhan Z
    Small; 2010 Jan; 6(1):132-7. PubMed ID: 19902432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.
    Xiang C; Lu W; Zhu Y; Sun Z; Yan Z; Hwang CC; Tour JM
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):131-6. PubMed ID: 22117617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bond strength of individual carbon nanotubes grown directly on carbon fibers.
    Kim KJ; Lee G; Kim SD; Kim SI; Youk JH; Lee J; Kim YW; Yu WR
    Nanotechnology; 2016 Oct; 27(40):405704. PubMed ID: 27581367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clamping instability and van der Waals forces in carbon nanotube mechanical resonators.
    Aykol M; Hou B; Dhall R; Chang SW; Branham W; Qiu J; Cronin SB
    Nano Lett; 2014 May; 14(5):2426-30. PubMed ID: 24758201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of continuously spun fibers of carbon nanotubes.
    Motta M; Li YL; Kinloch I; Windle A
    Nano Lett; 2005 Aug; 5(8):1529-33. PubMed ID: 16089483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of carbon nanotube fibers at extreme temperatures.
    Zhang C; Song Y; Zhang H; Lv B; Qiao J; Yu N; Zhang Y; Di J; Li Q
    Nanoscale; 2019 Mar; 11(10):4585-4590. PubMed ID: 30809624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of Gold Nanoparticles on Carbon Nanostructures Driven by van der Waals and Electrostatic Interactions.
    La Torre A; Gimenez-Lopez Mdel C; Fay MW; Lucas CH; Brown PD; Khlobystov AN
    Small; 2015 Jun; 11(23):2756-61. PubMed ID: 25689488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabricating Ultrastrong Carbon Nanotube Fibers via a Microwave Welding Interface.
    Huang J; Guo Y; Lei X; Chen B; Hao H; Luo J; Sun T; Jian M; Gao E; Wu X; Ma W; Shao Y; Zhang J
    ACS Nano; 2024 Jun; 18(22):14377-14387. PubMed ID: 38781118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoresistive effect in carbon nanotube fibers.
    Lekawa-Raus A; Koziol KK; Windle AH
    ACS Nano; 2014 Nov; 8(11):11214-24. PubMed ID: 25337627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of intertube van der Waals interaction on the stability of pristine and functionalized carbon nanotubes under compression.
    Kuang YD; Shi SQ; Chan PK; Chen CY
    Nanotechnology; 2010 Mar; 21(12):125704. PubMed ID: 20195018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.