BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31084359)

  • 1. Quantification of Voice Type Components Present in Human Phonation Using a Modified Diffusive Chaos Technique.
    Liu B; Polce E; Raj H; Jiang J
    Ann Otol Rhinol Laryngol; 2019 Oct; 128(10):921-931. PubMed ID: 31084359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Local Intrinsic Dimension for Acoustical Analysis of Voice Signal Components.
    Liu B; Polce E; Jiang J
    Ann Otol Rhinol Laryngol; 2018 Sep; 127(9):588-597. PubMed ID: 29911408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Rate of Divergence as an Objective Measure to Differentiate between Voice Signal Types Based on the Amount of Disorder in the Signal.
    Calawerts WM; Lin L; Sprott JC; Jiang JJ
    J Voice; 2017 Jan; 31(1):16-23. PubMed ID: 26920858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Objective Parameter to Classify Voice Signals Based on Variation in Energy Distribution.
    Liu B; Polce E; Jiang J
    J Voice; 2019 Sep; 33(5):591-602. PubMed ID: 29785936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Voice Training on Vocal Learner's Objective Acoustic Voice Components.
    Wu P; Klein L; Rozema Z; Haderlein N; Cai J; Scholp A; Xu X; Jiang JJ; Zhuang P
    J Voice; 2023 May; 37(3):355-361. PubMed ID: 33653622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Voice Type Component Distributions of Excised Larynx Phonations at Three Subglottal Pressures.
    Liu B; Raj H; Klein L; Jiang JJ
    J Speech Lang Hear Res; 2021 May; 64(5):1447-1456. PubMed ID: 33887153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic modeling of acoustic perception of breathiness in pathological voices.
    Castillo-Guerra E; Ruíz A
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):932-40. PubMed ID: 19423423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic analysis of aperiodic voice: perturbation and nonlinear dynamic properties in esophageal phonation.
    Maccallum JK; Cai L; Zhou L; Zhang Y; Jiang JJ
    J Voice; 2009 May; 23(3):283-90. PubMed ID: 18411036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applied Chaos Level Test for Validation of Signal Conditions Underlying Optimal Performance of Voice Classification Methods.
    Liu B; Polce E; Sprott JC; Jiang JJ
    J Speech Lang Hear Res; 2018 May; 61(5):1130-1139. PubMed ID: 29800353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumental dimensioning of normal and pathological phonation using acoustic measurements.
    Putzer M; Barry WJ
    Clin Linguist Phon; 2008 Jun; 22(6):407-20. PubMed ID: 18484282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaos in voice, from modeling to measurement.
    Jiang JJ; Zhang Y; McGilligan C
    J Voice; 2006 Mar; 20(1):2-17. PubMed ID: 15964740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Voice Use in Patients With Voice Disorders and Vocally Healthy Speakers Based on 2 Days Voice Accumulator Information From a Database.
    Södersten M; Salomão GL; McAllister A; Ternström S
    J Voice; 2015 Sep; 29(5):646.e1-9. PubMed ID: 26073776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceptual-auditory and Acoustic Analysis of Air Traffic Controllers' Voices Pre- and Postshift.
    Villar AC; Korn GP; Azevedo RR
    J Voice; 2016 Nov; 30(6):768.e11-768.e15. PubMed ID: 26778327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of acoustic perturbation measures in analysing periodic and nearly periodic voice signals.
    Ma EP; Yiu EM
    Folia Phoniatr Logop; 2005; 57(1):38-47. PubMed ID: 15655340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Objective Parameter for Quantifying the Turbulent Noise Portion of Voice Signals.
    Lin L; Calawerts W; Dodd K; Jiang JJ
    J Voice; 2016 Nov; 30(6):664-669. PubMed ID: 26474718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Updating signal typing in voice: addition of type 4 signals.
    Sprecher A; Olszewski A; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2010 Jun; 127(6):3710-16. PubMed ID: 20550269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associations between voice ergonomic risk factors and acoustic features of the voice.
    Rantala LM; Hakala S; Holmqvist S; Sala E
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):99-105. PubMed ID: 24007529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic correlates of vocal quality.
    Eskenazi L; Childers DG; Hicks DM
    J Speech Hear Res; 1990 Jun; 33(2):298-306. PubMed ID: 2359270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic Analyses of Prolonged Vowels in Young Adults With Friedreich Ataxia.
    Carson C; Ryalls J; Hardin-Hollingsworth K; Le Normand MT; Ruddy B
    J Voice; 2016 May; 30(3):272-80. PubMed ID: 26454768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Moving Window on Acoustic Analysis.
    Shu M; Jiang JJ; Willey M
    J Voice; 2016 Jan; 30(1):5-10. PubMed ID: 25998407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.