These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31084418)

  • 1. Force Control of Ankle Dorsiflexors in Young Adults: Effects of Bilateral Control and Leg Dominance.
    Yamaguchi A; Milosevic M; Sasaki A; Nakazawa K
    J Mot Behav; 2020; 52(2):226-235. PubMed ID: 31084418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in corticospinal excitability during bilateral and unilateral lower-limb force control tasks.
    Yamaguchi A; Sasaki A; Masugi Y; Milosevic M; Nakazawa K
    Exp Brain Res; 2020 Sep; 238(9):1977-1987. PubMed ID: 32591958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg Dominance Does Not Influence Maximal Force, Force Steadiness, or Motor Unit Discharge Characteristics.
    Petrovic I; Amiridis IG; Holobar A; Trypidakis G; Kellis E; Enoka RM
    Med Sci Sports Exerc; 2022 Aug; 54(8):1278-1287. PubMed ID: 35324535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tempo-controlled resistance training of the hip abductors and ankle dorsiflexors with light loads does not improve postural sway in older adults.
    Carzoli JP; Koger K; Amato A; Enoka RM
    Exp Brain Res; 2022 Nov; 240(11):3049-3060. PubMed ID: 36227344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain areas associated with force steadiness and intensity during isometric ankle dorsiflexion in men and women.
    Yoon T; Vanden Noven ML; Nielson KA; Hunter SK
    Exp Brain Res; 2014 Oct; 232(10):3133-45. PubMed ID: 24903120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in human antagonistic ankle dorsiflexor coactivation between legs; can they explain the moment deficit in the weaker plantarflexor leg?
    Maganaris CN; Baltzopoulos V; Sargeant AJ
    Exp Physiol; 1998 Nov; 83(6):843-55. PubMed ID: 9782193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual difference in β-band corticomuscular coherence and its relation to force steadiness during isometric voluntary ankle dorsiflexion in healthy humans.
    Ushiyama J; Yamada J; Liu M; Ushiba J
    Clin Neurophysiol; 2017 Feb; 128(2):303-311. PubMed ID: 28042996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An examination of lower limb asymmetry in ankle isometric force control.
    Yen SC; Olsavsky LC; Cloonan CM; Llanos AR; Dwyer KJ; Nabian M; Farjadian AB
    Hum Mov Sci; 2018 Feb; 57():40-49. PubMed ID: 29136539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower limb force production and bilateral force asymmetries are based on sense of effort.
    Simon AM; Ferris DP
    Exp Brain Res; 2008 May; 187(1):129-38. PubMed ID: 18251017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force control is impaired in the ankle plantarflexors of elderly adults.
    Tracy BL
    Eur J Appl Physiol; 2007 Nov; 101(5):629-36. PubMed ID: 17701201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discharge of human muscle spindle afferents innervating ankle dorsiflexors during target isometric contractions.
    Wilson LR; Gandevia SC; Burke D
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):221-32. PubMed ID: 9350632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictability of in vivo changes in pennation angle of human tibialis anterior muscle from rest to maximum isometric dorsiflexion.
    Maganaris CN; Baltzopoulos V
    Eur J Appl Physiol Occup Physiol; 1999 Feb; 79(3):294-7. PubMed ID: 10048637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age and load compliance alter time to task failure for a submaximal fatiguing contraction with the lower leg.
    Griffith EE; Yoon T; Hunter SK
    J Appl Physiol (1985); 2010 Jun; 108(6):1510-9. PubMed ID: 20299610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticospinal and transcallosal modulation of unilateral and bilateral contractions of lower limbs.
    Škarabot J; Alfonso RP; Cronin N; Bon J; Strojnik V; Avela J
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2197-2214. PubMed ID: 27628532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle fatigue-induced enhancement of corticomuscular coherence following sustained submaximal isometric contraction of the tibialis anterior muscle.
    Ushiyama J; Katsu M; Masakado Y; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2011 May; 110(5):1233-40. PubMed ID: 21393470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilateral deficit in maximal force production.
    Škarabot J; Cronin N; Strojnik V; Avela J
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2057-2084. PubMed ID: 27582260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor control differs for increasing and releasing force.
    Park SH; Kwon M; Solis D; Lodha N; Christou EA
    J Neurophysiol; 2016 Jun; 115(6):2924-30. PubMed ID: 26961104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of bilateral force deficit in proximal and distal joints in upper extremities.
    Aune TK; Aune MA; Ettema G; Vereijken B
    Hum Mov Sci; 2013 Jun; 32(3):436-44. PubMed ID: 23719626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electrical nerve stimulation on force generation, oxygenation and blood volume in muscles of the immobilized human leg.
    Zhang Q; Styf J; Ekström L; Holm AK
    Scand J Clin Lab Invest; 2014 Aug; 74(5):369-77. PubMed ID: 24697619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.