These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 31084529)
1. Facile synthesis of Cu-doped ZnO nanoparticle in triethyleneglycol: photocatalytic activities and aquatic ecotoxicity. Fkiri A; Wiem S; Sellami B; Saidani MA; Khazri A; Smiri LS Environ Technol; 2020 Dec; 41(28):3745-3755. PubMed ID: 31084529 [TBL] [Abstract][Full Text] [Related]
2. One-pot synthesis of lightly doped Zn Fkiri A; Santacruz MR; Mezni A; Smiri LS; Keller V; Keller N Environ Sci Pollut Res Int; 2017 Jun; 24(18):15622-15633. PubMed ID: 28523617 [TBL] [Abstract][Full Text] [Related]
3. Metal accumulation, biochemical and behavioral responses on the Mediterranean clams Ruditapes decussatus exposed to two photocatalyst nanocomposites (TiO Saidani W; Sellami B; Khazri A; Mezni A; Dellali M; Joubert O; Sheehan D; Beyrem H Aquat Toxicol; 2019 Mar; 208():71-79. PubMed ID: 30639746 [TBL] [Abstract][Full Text] [Related]
4. Toxicity assessment of ZnO-decorated Au nanoparticles in the Mediterranean clam Ruditapes decussatus. Sellami B; Mezni A; Khazri A; Bouzidi I; Saidani W; Sheehan D; Beyrem H Aquat Toxicol; 2017 Jul; 188():10-19. PubMed ID: 28441607 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: Kinetics and reaction pathways. Shirzad-Siboni M; Jonidi-Jafari A; Farzadkia M; Esrafili A; Gholami M J Environ Manage; 2017 Jan; 186(Pt 1):1-11. PubMed ID: 27836562 [TBL] [Abstract][Full Text] [Related]
6. A study on Cu and Ag doped ZnO nanoparticles for the photocatalytic degradation of brilliant green dye: synthesis and characterization. Gnanaprakasam A; Sivakumar VM; Thirumarimurugan M Water Sci Technol; 2016 Sep; 74(6):1426-1435. PubMed ID: 27685972 [TBL] [Abstract][Full Text] [Related]
7. Effects of rare earth element samarium doped zinc oxide nanoparticles on Mytilus galloprovincialis (Lamarck, 1819): Filtration rates and histopathology. El Ayari T; Ben Ahmed R; Hammemi Z; Kouki A; Chelb E; Nechi S; Trigui El Menif N J Trace Elem Med Biol; 2024 Jan; 81():127349. PubMed ID: 38006813 [TBL] [Abstract][Full Text] [Related]
8. In vivo exposure of the marine clam Ruditapes philippinarum to zinc oxide nanoparticles: responses in gills, digestive gland and haemolymph. Marisa I; Matozzo V; Munari M; Binelli A; Parolini M; Martucci A; Franceschinis E; Brianese N; Marin MG Environ Sci Pollut Res Int; 2016 Aug; 23(15):15275-93. PubMed ID: 27102620 [TBL] [Abstract][Full Text] [Related]
9. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Khan SA; Noreen F; Kanwal S; Iqbal A; Hussain G Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():46-59. PubMed ID: 29025674 [TBL] [Abstract][Full Text] [Related]
10. Preparation of N-doped ZnO-loaded halloysite nanotubes catalysts with high solar-light photocatalytic activity. Cheng ZL; Sun W Water Sci Technol; 2015; 72(10):1817-23. PubMed ID: 26540544 [TBL] [Abstract][Full Text] [Related]
11. Photocatalytic, dye degradation, and bactericidal behavior of Cu-doped ZnO nanorods and their molecular docking analysis. Rashid M; Ikram M; Haider A; Naz S; Haider J; Ul-Hamid A; Shahzadi A; Aqeel M Dalton Trans; 2020 Jun; 49(24):8314-8330. PubMed ID: 32515772 [TBL] [Abstract][Full Text] [Related]
12. Electrical behavior and enhanced photocatalytic activity of (Ag, Ni) co-doped ZnO nanoparticles synthesized from co-precipitation technique. Jeyachitra R; Kalpana S; Senthil TS; Kang M Water Sci Technol; 2020 Mar; 81(6):1296-1307. PubMed ID: 32597415 [TBL] [Abstract][Full Text] [Related]
13. Rapid, controllable, one-pot and room-temperature aqueous synthesis of ZnO:Cu nanoparticles by pulsed UV laser and its application for photocatalytic degradation of methyl orange. Arabi M; Baizaee SM; Bahador A; Otaqsara SMT Luminescence; 2018 May; 33(3):475-485. PubMed ID: 29282896 [TBL] [Abstract][Full Text] [Related]
14. Facile Synthesis of Cu-Doped ZnO Nanoparticles for the Enhanced Photocatalytic Disinfection of Bacteria and Fungi. Nan R; Liu S; Zhai M; Zhu M; Sun X; Chen Y; Pang Q; Zhang J Molecules; 2023 Oct; 28(20):. PubMed ID: 37894712 [TBL] [Abstract][Full Text] [Related]
15. Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R). Siddique YH; Haidari M; Khan W; Fatima A; Jyoti S; Khanam S; Naz F; Rahul ; Ali F; Singh BR; Beg T; Mohibullah ; Naqvi AH Toxicol Mech Methods; 2015; 25(6):425-32. PubMed ID: 26000624 [TBL] [Abstract][Full Text] [Related]
16. Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Saidani W; Bouzidi I; Khazri A; Ghannem S; Aouani I; Fkiri A; Touil S; Alghonaim MI; Alsalamah SA; Qurtam AA; Beyrem H; Boufahja F; Sellami B Molecules; 2023 Mar; 28(6):. PubMed ID: 36985432 [TBL] [Abstract][Full Text] [Related]
17. Pulsed laser-assisted synthesis of metal and nonmetal-codoped ZnO for efficient photocatalytic degradation of Rhodamine B under solar light irradiation. Naik SS; Lee SJ; Yeon S; Yu Y; Choi MY Chemosphere; 2021 Jul; 274():129782. PubMed ID: 33548639 [TBL] [Abstract][Full Text] [Related]
18. Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies. Zangeneh M; Nedaei HA; Mozdarani H; Mahmoudzadeh A; Salimi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109739. PubMed ID: 31349426 [TBL] [Abstract][Full Text] [Related]
19. Effect of exopolysaccharides on photocatalytic activity of ZnO nanoparticles. Chandran P; Netha S; Ravindran A; Sudheer Khan S Colloids Surf B Biointerfaces; 2014 Oct; 122():611-616. PubMed ID: 25124836 [TBL] [Abstract][Full Text] [Related]