BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31084594)

  • 1. Advances in Structural Biology of ACE and Development of Domain Selective ACE-inhibitors.
    Polakovičová M; Jampílek J
    Med Chem; 2019; 15(6):574-587. PubMed ID: 31084594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of testis angiotensin-converting enzyme in complex with the C domain-specific inhibitor RXPA380.
    Corradi HR; Chitapi I; Sewell BT; Georgiadis D; Dive V; Sturrock ED; Acharya KR
    Biochemistry; 2007 May; 46(18):5473-8. PubMed ID: 17439247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of angiotensin converting enzyme mutations on the kinetics and dynamics of N-domain selective inhibition.
    Lubbe L; Sewell BT; Sturrock ED
    FEBS J; 2016 Nov; 283(21):3941-3961. PubMed ID: 27636235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the C-domain-selective angiotensin-converting enzyme inhibition by bradykinin-potentiating peptide b (BPPb).
    Sturrock ED; Lubbe L; Cozier GE; Schwager SLU; Arowolo AT; Arendse LB; Belcher E; Acharya KR
    Biochem J; 2019 May; 476(10):1553-1570. PubMed ID: 31072910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ACE-domain selectivity extends beyond direct interacting residues at the active site.
    Cozier GE; Lubbe L; Sturrock ED; Acharya KR
    Biochem J; 2020 Apr; 477(7):1241-1259. PubMed ID: 32195541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated interactions between angiotensin-converting enzyme and substrate gonadotropin-releasing hormone: novel insights into domain selectivity.
    Papakyriakou A; Spyroulias GA; Sturrock ED; Manessi-Zoupa E; Cordopatis P
    Biochemistry; 2007 Jul; 46(30):8753-65. PubMed ID: 17605472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determinants of RXPA380, a potent and highly selective inhibitor of the angiotensin-converting enzyme C-domain.
    Georgiadis D; Cuniasse P; Cotton J; Yiotakis A; Dive V
    Biochemistry; 2004 Jun; 43(25):8048-54. PubMed ID: 15209500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming Non-Selective Angiotensin-Converting Enzyme Inhibitors in C- and N-domain Selective Inhibitors by Using Computational Tools.
    Alfaro S; Navarro-Retamal C; Caballero J
    Mini Rev Med Chem; 2020; 20(14):1436-1446. PubMed ID: 31889494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of domain-selective angiotensin I-converting enzyme inhibitors.
    Redelinghuys P; Nchinda AT; Sturrock ED
    Ann N Y Acad Sci; 2005 Nov; 1056():160-75. PubMed ID: 16387685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme.
    Larmuth KM; Masuyer G; Douglas RG; Schwager SL; Acharya KR; Sturrock ED
    FEBS J; 2016 Mar; 283(6):1060-76. PubMed ID: 26748546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of domain-selective inhibitor binding in angiotensin-converting enzyme using a novel derivative of lisinopril.
    Watermeyer JM; Kröger WL; O'Neill HG; Sewell BT; Sturrock ED
    Biochem J; 2010 Apr; 428(1):67-74. PubMed ID: 20233165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin-converting enzyme open for business: structural insights into the subdomain dynamics.
    Cozier GE; Lubbe L; Sturrock ED; Acharya KR
    FEBS J; 2021 Apr; 288(7):2238-2256. PubMed ID: 33067882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design.
    Corradi HR; Schwager SL; Nchinda AT; Sturrock ED; Acharya KR
    J Mol Biol; 2006 Mar; 357(3):964-74. PubMed ID: 16476442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of highly specific phosphinic tripeptide enantiomers in complex with the angiotensin-I converting enzyme.
    Masuyer G; Akif M; Czarny B; Beau F; Schwager SL; Sturrock ED; Isaac RE; Dive V; Acharya KR
    FEBS J; 2014 Feb; 281(3):943-56. PubMed ID: 24289879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of human ACE gives new insights into inhibitor binding and design.
    Brew K
    Trends Pharmacol Sci; 2003 Aug; 24(8):391-4. PubMed ID: 12915047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Design and Development of a Potent and Selective Novel Diprolyl Derivative That Binds to the N-Domain of Angiotensin-I Converting Enzyme.
    Fienberg S; Cozier GE; Acharya KR; Chibale K; Sturrock ED
    J Med Chem; 2018 Jan; 61(1):344-359. PubMed ID: 29206036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Structure and physiological significance of angiotensin converting enzyme domains].
    Eliseeva IuE; Kugaevskaia EV
    Biomed Khim; 2009; 55(4):397-414. PubMed ID: 20000120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of sampatrilat and sampatrilat-Asp in complex with human ACE - a molecular basis for domain selectivity.
    Cozier GE; Schwager SL; Sharma RK; Chibale K; Sturrock ED; Acharya KR
    FEBS J; 2018 Apr; 285(8):1477-1490. PubMed ID: 29476645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New ketomethylene inhibitor analogues: synthesis and assessment of structural determinants for N-domain selective inhibition of angiotensin-converting enzyme.
    Sharma RK; Douglas RG; Louw S; Chibale K; Sturrock ED
    Biol Chem; 2012 May; 393(6):485-93. PubMed ID: 22628311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors.
    Caballero J
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31940798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.