These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31084716)

  • 1. Neck linker docking is critical for Kinesin-1 force generation in cells but at a cost to motor speed and processivity.
    Budaitis BG; Jariwala S; Reinemann DN; Schimert KI; Scarabelli G; Grant BJ; Sept D; Lang MJ; Verhey KJ
    Elife; 2019 May; 8():. PubMed ID: 31084716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force generation in kinesin hinges on cover-neck bundle formation.
    Hwang W; Lang MJ; Karplus M
    Structure; 2008 Jan; 16(1):62-71. PubMed ID: 18184584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The processivity of kinesin-2 motors suggests diminished front-head gating.
    Muthukrishnan G; Zhang Y; Shastry S; Hancock WO
    Curr Biol; 2009 Mar; 19(5):442-7. PubMed ID: 19278641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular cargo transport by single-headed kinesin motors.
    Schimert KI; Budaitis BG; Reinemann DN; Lang MJ; Verhey KJ
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6152-6161. PubMed ID: 30850543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force Dependence of Velocity and Run Length of Kinesin-1, Kinesin-2 and Kinesin-5 Family Molecular Motors.
    Guo SK; Wang WC; Wang PY; Xie P
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30646587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors.
    Shastry S; Hancock WO
    Curr Biol; 2010 May; 20(10):939-43. PubMed ID: 20471270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force-generation.
    Shang Z; Zhou K; Xu C; Csencsits R; Cochran JC; Sindelar CV
    Elife; 2014 Nov; 3():e04686. PubMed ID: 25415053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular aspects of kinesin force generation machinery.
    Hesse WR; Steiner M; Wohlever ML; Kamm RD; Hwang W; Lang MJ
    Biophys J; 2013 May; 104(9):1969-78. PubMed ID: 23663840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Delineation of the Neck Linker of Kinesin-3 for Processive Movement.
    Ren J; Zhang Y; Wang S; Huo L; Lou J; Feng W
    J Mol Biol; 2018 Jul; 430(14):2030-2041. PubMed ID: 29752968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinesin's cover-neck bundle folds forward to generate force.
    Khalil AS; Appleyard DC; Labno AK; Georges A; Karplus M; Belcher AM; Hwang W; Lang MJ
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19247-52. PubMed ID: 19047639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the structural and dynamical features of kinesin motor domains.
    Scarabelli G; Grant BJ
    PLoS Comput Biol; 2013; 9(11):e1003329. PubMed ID: 24244137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and movement through allosteric mechanisms.
    Budaitis BG; Jariwala S; Rao L; Yue Y; Sept D; Verhey KJ; Gennerich A
    J Cell Biol; 2021 Apr; 220(4):. PubMed ID: 33496723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular functions and motile properties of bi-directional kinesin-5 Cin8 are regulated by neck linker docking.
    Goldstein-Levitin A; Pandey H; Allhuzaeel K; Kass I; Gheber L
    Elife; 2021 Aug; 10():. PubMed ID: 34387192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport by populations of fast and slow kinesins uncovers novel family-dependent motor characteristics important for in vivo function.
    Arpağ G; Shastry S; Hancock WO; Tüzel E
    Biophys J; 2014 Oct; 107(8):1896-1904. PubMed ID: 25418170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo analysis of neck linker extension in kinesin molecular motors.
    Kutys ML; Fricks J; Hancock WO
    PLoS Comput Biol; 2010 Nov; 6(11):e1000980. PubMed ID: 21079666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide-dependent displacement and dynamics of the α-1 helix in kinesin revealed by site-directed spin labeling EPR.
    Yasuda S; Yanagi T; Yamada MD; Ueki S; Maruta S; Inoue A; Arata T
    Biochem Biophys Res Commun; 2014 Jan; 443(3):911-6. PubMed ID: 24361895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neck-linker length dependence of processive Kinesin-5 motility.
    Düselder A; Thiede C; Schmidt CF; Lakämper S
    J Mol Biol; 2012 Oct; 423(2):159-68. PubMed ID: 22789568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining kinesin processivity within a general gating framework.
    Andreasson JO; Milic B; Chen GY; Guydosh NR; Hancock WO; Block SM
    Elife; 2015 Apr; 4():. PubMed ID: 25902401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker.
    Turner J; Anderson R; Guo J; Beraud C; Fletterick R; Sakowicz R
    J Biol Chem; 2001 Jul; 276(27):25496-502. PubMed ID: 11328809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A common chemomechanical coupling model for orphan and conventional kinesin molecular motors.
    Guo SK; Xie P
    Biophys Chem; 2020 Sep; 264():106427. PubMed ID: 32682233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.