These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31084877)

  • 1. Machine learning approaches and their current application in plant molecular biology: A systematic review.
    Silva JCF; Teixeira RM; Silva FF; Brommonschenkel SH; Fontes EPB
    Plant Sci; 2019 Jul; 284():37-47. PubMed ID: 31084877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning in plant-pathogen interactions: empowering biological predictions from field scale to genome scale.
    Sperschneider J
    New Phytol; 2020 Oct; 228(1):35-41. PubMed ID: 30834534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning: its challenges and opportunities in plant system biology.
    Hesami M; Alizadeh M; Jones AMP; Torkamaneh D
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3507-3530. PubMed ID: 35575915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning for Big Data analytics in plants.
    Ma C; Zhang HH; Wang X
    Trends Plant Sci; 2014 Dec; 19(12):798-808. PubMed ID: 25223304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture.
    Hesami M; Jones AMP
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9449-9485. PubMed ID: 32984921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning and its applications in plant molecular studies.
    Sun S; Wang C; Ding H; Zou Q
    Brief Funct Genomics; 2020 Jan; 19(1):40-48. PubMed ID: 31867668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Ă…rsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems Biology and Machine Learning in Plant-Pathogen Interactions.
    Mishra B; Kumar N; Mukhtar MS
    Mol Plant Microbe Interact; 2019 Jan; 32(1):45-55. PubMed ID: 30418085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomics and its role in understanding cellular responses in plants.
    Bhalla R; Narasimhan K; Swarup S
    Plant Cell Rep; 2005 Dec; 24(10):562-71. PubMed ID: 16220342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
    Koromina M; Pandi MT; Patrinos GP
    OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geminivirus data warehouse: a database enriched with machine learning approaches.
    Silva JCF; Carvalho TFM; Basso MF; Deguchi M; Pereira WA; Sobrinho RR; Vidigal PMP; Brustolini OJB; Silva FF; Dal-Bianco M; Fontes RLF; Santos AA; Zerbini FM; Cerqueira FR; Fontes EPB
    BMC Bioinformatics; 2017 May; 18(1):240. PubMed ID: 28476106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology.
    Yan J; Wang X
    Plant J; 2022 Sep; 111(6):1527-1538. PubMed ID: 35821601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of machine learning in understanding plant virus pathogenesis: trends and perspectives on emergence, diagnosis, host-virus interplay and management.
    Ghosh D; Chakraborty S; Kodamana H; Chakraborty S
    Virol J; 2022 Mar; 19(1):42. PubMed ID: 35264189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics.
    Popescu GV; Noutsos C; Popescu SC
    Methods Mol Biol; 2016; 1415():533-47. PubMed ID: 27115651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical assessment and performance improvement of plant-pathogen protein-protein interaction prediction methods.
    Yang S; Li H; He H; Zhou Y; Zhang Z
    Brief Bioinform; 2019 Jan; 20(1):274-287. PubMed ID: 29028906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-Generation Machine Learning for Biological Networks.
    Camacho DM; Collins KM; Powers RK; Costello JC; Collins JJ
    Cell; 2018 Jun; 173(7):1581-1592. PubMed ID: 29887378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial intelligence in molecular biology: a review and assessment.
    Rawlings CJ; Fox JP
    Philos Trans R Soc Lond B Biol Sci; 1994 Jun; 344(1310):353-62; discussion 362-3. PubMed ID: 7800705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of machine learning with computational structural biology of plants.
    Chen J; Shukla D
    Biochem J; 2022 Apr; 479(8):921-928. PubMed ID: 35484946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.