BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 31085200)

  • 1. Serotonergic mechanisms in spinal cord injury.
    Perrin FE; Noristani HN
    Exp Neurol; 2019 Aug; 318():174-191. PubMed ID: 31085200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the serotonergic system in locomotor recovery after spinal cord injury.
    Ghosh M; Pearse DD
    Front Neural Circuits; 2014; 8():151. PubMed ID: 25709569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury.
    Goulão M; Ghosh B; Urban MW; Sahu M; Mercogliano C; Charsar BA; Komaravolu S; Block CG; Smith GM; Wright MC; Lepore AC
    Glia; 2019 Mar; 67(3):452-466. PubMed ID: 30548313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury.
    Jaerve A; Schiwy N; Schmitz C; Mueller HW
    Exp Neurol; 2011 Oct; 231(2):284-94. PubMed ID: 21806987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.
    Zou Y; Stagi M; Wang X; Yigitkanli K; Siegel CS; Nakatsu F; Cafferty WB; Strittmatter SM
    J Neurosci; 2015 Jul; 35(29):10429-39. PubMed ID: 26203138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic regulation of axon regeneration after spinal cord injury: Recent advances and remaining challenges.
    Noristani HN
    Exp Neurol; 2022 Nov; 357():114198. PubMed ID: 35944658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonergic transmission after spinal cord injury.
    Nardone R; Höller Y; Thomschewski A; Höller P; Lochner P; Golaszewski S; Brigo F; Trinka E
    J Neural Transm (Vienna); 2015 Feb; 122(2):279-95. PubMed ID: 24866695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
    Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K
    Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined genetic attenuation of myelin and semaphorin-mediated growth inhibition is insufficient to promote serotonergic axon regeneration.
    Lee JK; Chow R; Xie F; Chow SY; Tolentino KE; Zheng B
    J Neurosci; 2010 Aug; 30(32):10899-904. PubMed ID: 20702718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury.
    Tysseling VM; Sahni V; Pashuck ET; Birch D; Hebert A; Czeisler C; Stupp SI; Kessler JA
    J Neurosci Res; 2010 Nov; 88(14):3161-70. PubMed ID: 20818775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury.
    Sharp KG; Yee KM; Stiles TL; Aguilar RM; Steward O
    Exp Neurol; 2013 Oct; 248():321-37. PubMed ID: 23830951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of autonomic dysreflexia after spinal cord injury is associated with a lack of serotonergic axons in the intermediolateral cell column.
    Cormier CM; Mukhida K; Walker G; Marsh DR
    J Neurotrauma; 2010 Oct; 27(10):1805-18. PubMed ID: 20698759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serotonergic innervation of the caudal spinal stump in rats after complete spinal transection: effect of olfactory ensheathing glia.
    Takeoka A; Kubasak MD; Zhong H; Roy RR; Phelps PE
    J Comp Neurol; 2009 Aug; 515(6):664-76. PubMed ID: 19496067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of axonal regeneration following spinal cord injury in the lamprey.
    Benes JA; House KN; Burks FN; Conaway KP; Julien DP; Donley JP; Iyamu MA; McClellan AD
    J Neurophysiol; 2017 Sep; 118(3):1439-1456. PubMed ID: 28469003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance of interleukin-6 to the extracellular inhibitory environment promotes axonal regeneration and functional recovery following spinal cord injury.
    Yang G; Tang WY
    Int J Mol Med; 2017 Feb; 39(2):437-445. PubMed ID: 28075461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI.
    Urban MW; Ghosh B; Strojny LR; Block CG; Blazejewski SM; Wright MC; Smith GM; Lepore AC
    Exp Neurol; 2018 May; 303():108-119. PubMed ID: 29453976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.