These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 31085363)
1. Development of biocompatible and fully bioabsorbable PLA/Mg films for tissue regeneration applications. Ferrández-Montero A; Lieblich M; González-Carrasco JL; Benavente R; Lorenzo V; Detsch R; Boccaccini AR; Ferrari B Acta Biomater; 2019 Oct; 98():114-124. PubMed ID: 31085363 [TBL] [Abstract][Full Text] [Related]
2. In vitro degradation of biodegradable polylactic acid/magnesium composites: Relevance of Mg particle shape. Cifuentes SC; Gavilán R; Lieblich M; Benavente R; González-Carrasco JL Acta Biomater; 2016 Mar; 32():348-357. PubMed ID: 26747758 [TBL] [Abstract][Full Text] [Related]
3. Impact of PLA/Mg films degradation on surface physical properties and biofilm survival. Fernández-Calderón MC; Romero-Guzmán D; Ferrández-Montero A; Pérez-Giraldo C; González-Carrasco JL; Lieblich M; Benavente R; Ferrari B; González-Martín ML; Gallardo-Moreno AM Colloids Surf B Biointerfaces; 2020 Jan; 185():110617. PubMed ID: 31740326 [TBL] [Abstract][Full Text] [Related]
4. In vitro degradation of a biodegradable polylactic acid/magnesium composite as potential bone augmentation material in the presence of titanium and PEEK dental implants. Zimmermann T; Ferrandez-Montero A; Lieblich M; Ferrari B; González-Carrasco JL; Müller WD; Schwitalla AD Dent Mater; 2018 Oct; 34(10):1492-1500. PubMed ID: 29941350 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable implant of magnesium/polylactic acid composite with enhanced antibacterial and anti-inflammatory properties. Qian Y; Wang X; Wang P; Wu J; Shen Y; Cai K; Bai J; Lu M; Tang C J Biomater Appl; 2024 Sep; 39(3):165-178. PubMed ID: 38816339 [TBL] [Abstract][Full Text] [Related]
6. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
7. Self-neutralizing PLGA/magnesium composites as novel biomaterials for tissue engineering. Xu TO; Kim HS; Stahl T; Nukavarapu SP Biomed Mater; 2018 Mar; 13(3):035013. PubMed ID: 29362293 [TBL] [Abstract][Full Text] [Related]
8. A strategy for enhancing bioactivity and osseointegration with antibacterial effect by incorporating magnesium in polylactic acid based biodegradable orthopedic implant. Lee H; Shin DY; Bang SJ; Han G; Na Y; Kang HS; Oh S; Yoon CB; Vijayavenkataraman S; Song J; Kim HE; Jung HD; Kang MH Int J Biol Macromol; 2024 Jan; 254(Pt 3):127797. PubMed ID: 37949272 [TBL] [Abstract][Full Text] [Related]
9. Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion. Cifuentes SC; Lieblich M; López FA; Benavente R; González-Carrasco JL Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():18-25. PubMed ID: 28024575 [TBL] [Abstract][Full Text] [Related]
10. Cytocompatibility, cell-material interaction, and osteogenic differentiation of MC3T3-E1 pre-osteoblasts in contact with engineered Mg/PLA composites. Ali W; Ordoño J; Kopp A; González C; Echeverry-Rendón M; LLorca J J Biomed Mater Res A; 2024 Dec; 112(12):2136-2148. PubMed ID: 38899796 [TBL] [Abstract][Full Text] [Related]
11. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation. Niemelä T; Niiranen H; Kellomäki M Acta Biomater; 2008 Jan; 4(1):156-64. PubMed ID: 17692583 [TBL] [Abstract][Full Text] [Related]
12. Fiber-reinforced bioactive and bioabsorbable hybrid composites. Huttunen M; Törmälä P; Godinho P; Kellomäki M Biomed Mater; 2008 Sep; 3(3):034106. PubMed ID: 18689925 [TBL] [Abstract][Full Text] [Related]
13. Exploring the in vitro and in vivo compatibility of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites: Prospects for tendon and ligament applications. Correia Pinto V; Costa-Almeida R; Rodrigues I; Guardão L; Soares R; Miranda Guedes R J Biomed Mater Res A; 2017 Aug; 105(8):2182-2190. PubMed ID: 28370990 [TBL] [Abstract][Full Text] [Related]
14. Cell responses and hemocompatibility of g-HA/PLA composites. Li J; Zheng W; Zheng Y; Lou X Sci China Life Sci; 2011 Apr; 54(4):366-71. PubMed ID: 21416229 [TBL] [Abstract][Full Text] [Related]
15. Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical applications. Adhikari U; An X; Rijal N; Hopkins T; Khanal S; Chavez T; Tatu R; Sankar J; Little KJ; Hom DB; Bhattarai N; Pixley SK Acta Biomater; 2019 Oct; 98():215-234. PubMed ID: 31059833 [TBL] [Abstract][Full Text] [Related]
16. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds. Elhattab K; Bhaduri SB; Lawrence JG; Sikder P ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414 [TBL] [Abstract][Full Text] [Related]
17. Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion. Ben Abdeljawad M; Carette X; Argentati C; Martino S; Gonon MF; Odent J; Morena F; Mincheva R; Raquez JM Molecules; 2021 Sep; 26(19):. PubMed ID: 34641488 [TBL] [Abstract][Full Text] [Related]
18. A strategy for controlling degradation in vitro of carbon fiber-reinforced polylactic acid composites (by combining fiber modification and pulsed electromagnetic fields). Zhang D; Qi J; Qiao S; Liu L; Wang B; Zhao Z J Biomater Sci Polym Ed; 2018 Nov; 29(16):1964-1977. PubMed ID: 30141735 [TBL] [Abstract][Full Text] [Related]
19. Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds. Liu H; Wang R; Chu HK; Sun D J Biomed Mater Res A; 2015 Sep; 103(9):2966-73. PubMed ID: 25690806 [TBL] [Abstract][Full Text] [Related]
20. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Vance RJ; Miller DC; Thapa A; Haberstroh KM; Webster TJ Biomaterials; 2004 May; 25(11):2095-103. PubMed ID: 14741624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]