BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31085683)

  • 1. Selective Kinase Inhibition Shows That Bur1 (Cdk9) Phosphorylates the Rpb1 Linker
    Chun Y; Joo YJ; Suh H; Batot G; Hill CP; Formosa T; Buratowski S
    Mol Cell Biol; 2019 Aug; 39(15):. PubMed ID: 31085683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters.
    Qiu H; Hu C; Hinnebusch AG
    Mol Cell; 2009 Mar; 33(6):752-62. PubMed ID: 19328068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly.
    Burugula BB; Jeronimo C; Pathak R; Jones JW; Robert F; Govind CK
    Mol Cell Biol; 2014 Nov; 34(22):4115-29. PubMed ID: 25182531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.
    Bartkowiak B; Liu P; Phatnani HP; Fuda NJ; Cooper JJ; Price DH; Adelman K; Lis JT; Greenleaf AL
    Genes Dev; 2010 Oct; 24(20):2303-16. PubMed ID: 20952539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation.
    Dronamraju R; Strahl BD
    Nucleic Acids Res; 2014 Jan; 42(2):870-81. PubMed ID: 24163256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex.
    Liu Y; Warfield L; Zhang C; Luo J; Allen J; Lang WH; Ranish J; Shokat KM; Hahn S
    Mol Cell Biol; 2009 Sep; 29(17):4852-63. PubMed ID: 19581288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of the RNA polymerase II carboxy-terminal domain by the Bur1 cyclin-dependent kinase.
    Murray S; Udupa R; Yao S; Hartzog G; Prelich G
    Mol Cell Biol; 2001 Jul; 21(13):4089-96. PubMed ID: 11390638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bur1 kinase is required for efficient transcription elongation by RNA polymerase II.
    Keogh MC; Podolny V; Buratowski S
    Mol Cell Biol; 2003 Oct; 23(19):7005-18. PubMed ID: 12972617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation.
    GarcĂ­a A; Rosonina E; Manley JL; Calvo O
    Mol Cell Biol; 2010 Nov; 30(21):5180-93. PubMed ID: 20823273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription.
    Sdano MA; Fulcher JM; Palani S; Chandrasekharan MB; Parnell TJ; Whitby FG; Formosa T; Hill CP
    Elife; 2017 Aug; 6():. PubMed ID: 28826505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro analysis of RNA polymerase II elongation complex dynamics.
    Joo YJ; Ficarro SB; Chun Y; Marto JA; Buratowski S
    Genes Dev; 2019 May; 33(9-10):578-589. PubMed ID: 30846429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction between the Spt6-tSH2 domain and Rpb1 affects multiple functions of RNA Polymerase II.
    Connell Z; Parnell TJ; McCullough LL; Hill CP; Formosa T
    Nucleic Acids Res; 2022 Jan; 50(2):784-802. PubMed ID: 34967414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb.
    Wood A; Shilatifard A
    Cell Cycle; 2006 May; 5(10):1066-8. PubMed ID: 16721054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional depletion of transcriptional kinases Ctk1 and Bur1 and effects on co-transcriptional spliceosome assembly and pre-mRNA splicing.
    Maudlin IE; Beggs JD
    RNA Biol; 2021 Nov; 18(sup2):782-793. PubMed ID: 34705599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation.
    Kim YK; Bourgeois CF; Isel C; Churcher MJ; Karn J
    Mol Cell Biol; 2002 Jul; 22(13):4622-37. PubMed ID: 12052871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutual targeting of mediator and the TFIIH kinase Kin28.
    Guidi BW; Bjornsdottir G; Hopkins DC; Lacomis L; Erdjument-Bromage H; Tempst P; Myers LC
    J Biol Chem; 2004 Jul; 279(28):29114-20. PubMed ID: 15126497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases.
    Bowman EA; Kelly WG
    Nucleus; 2014; 5(3):224-36. PubMed ID: 24879308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinase Cak1 functionally interacts with the PAF1 complex and phosphatase Ssu72 via kinases Ctk1 and Bur1.
    Ganem C; Miled C; Facca C; Valay JG; Labesse G; Ben Hassine S; Mann C; Faye G
    Mol Genet Genomics; 2006 Feb; 275(2):136-47. PubMed ID: 16362371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5.
    Zhou K; Kuo WH; Fillingham J; Greenblatt JF
    Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6956-61. PubMed ID: 19365074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast.
    Trotta E
    J Biol Chem; 2019 Aug; 294(33):12349-12358. PubMed ID: 31235518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.