BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31085692)

  • 1. A Mutagenic Screen Identifies a TonB-Dependent Receptor Required for the Lanthanide Metal Switch in the Type I Methanotroph "Methylotuvimicrobium buryatense" 5GB1C.
    Groom JD; Ford SM; Pesesky MW; Lidstrom ME
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31085692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation techniques to study lanthanide metal interactions in the haloalkaliphilic Type I methanotroph "Methylotuvimicrobium buryatense" 5GB1C.
    Groom JD; Lidstrom ME
    Methods Enzymol; 2021; 650():237-259. PubMed ID: 33867024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense.
    Chu F; Lidstrom ME
    J Bacteriol; 2016 Apr; 198(8):1317-25. PubMed ID: 26858104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a TonB-Dependent Receptor Involved in Lanthanide Switch by the Characterization of Laboratory-Adapted Methylosinus trichosporium OB3b.
    Shiina W; Ito H; Kamachi T
    Appl Environ Microbiol; 2023 Jan; 89(1):e0141322. PubMed ID: 36645275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of the lanthanide-dependent methanol dehydrogenase XoxF from the methanotroph Methylomicrobium buryatense 5GB1C.
    Deng YW; Ro SY; Rosenzweig AC
    J Biol Inorg Chem; 2018 Oct; 23(7):1037-1047. PubMed ID: 30132076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy.
    Zheng Y; Huang J; Zhao F; Chistoserdova L
    mBio; 2018 Mar; 9(2):. PubMed ID: 29588409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase.
    Schmitz RA; Picone N; Singer H; Dietl A; Seifert KA; Pol A; Jetten MSM; Barends TRM; Daumann LJ; Op den Camp HJM
    mBio; 2021 Oct; 12(5):e0170821. PubMed ID: 34544276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions.
    Krause SM; Johnson T; Samadhi Karunaratne Y; Fu Y; Beck DA; Chistoserdova L; Lidstrom ME
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):358-363. PubMed ID: 28028242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and Genomic Characterization of a Proteobacterial Methanotroph Requiring Lanthanides.
    Kato S; Takashino M; Igarashi K; Kitagawa W
    Microbes Environ; 2020; 35(1):. PubMed ID: 32037377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional Regulation of Methanol Dehydrogenases in the Methanotrophic Bacterium Methylococcus capsulatus Bath by Soluble and Insoluble Lanthanides.
    Xie R; Takashino M; Igarashi K; Kitagawa W; Kato S
    Microbes Environ; 2023; 38(4):. PubMed ID: 38092408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rare earth metals are essential for methanotrophic life in volcanic mudpots.
    Pol A; Barends TR; Dietl A; Khadem AF; Eygensteyn J; Jetten MS; Op den Camp HJ
    Environ Microbiol; 2014 Jan; 16(1):255-64. PubMed ID: 24034209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates.
    Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC
    J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Characteristics of Two Novel Type I Methanotrophs Enriched from North Sea Sediments Containing Exclusively a Lanthanide-Dependent XoxF5-Type Methanol Dehydrogenase.
    Vekeman B; Speth D; Wille J; Cremers G; De Vos P; Op den Camp HJ; Heylen K
    Microb Ecol; 2016 Oct; 72(3):503-9. PubMed ID: 27457652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth.
    Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E
    J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1.
    Good NM; Moore RS; Suriano CJ; Martinez-Gomez NC
    Sci Rep; 2019 Mar; 9(1):4248. PubMed ID: 30862918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lanthanide-Dependent Methylotrophs of the Family
    Wegner CE; Gorniak L; Riedel S; Westermann M; Küsel K
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31604774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lanthanides: New life metals?
    Chistoserdova L
    World J Microbiol Biotechnol; 2016 Aug; 32(8):138. PubMed ID: 27357406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in Methylomicrobium buryatense.
    Chu F; Beck DA; Lidstrom ME
    PeerJ; 2016; 4():e2435. PubMed ID: 27651996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Lanthanide Ions Affect the Addition-Elimination Step of Methanol Dehydrogenases.
    Prejanò M; Russo N; Marino T
    Chemistry; 2020 Sep; 26(49):11334-11339. PubMed ID: 32369635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference.
    Keltjens JT; Pol A; Reimann J; Op den Camp HJ
    Appl Microbiol Biotechnol; 2014; 98(14):6163-83. PubMed ID: 24816778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.