BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 31086053)

  • 1. Calcium-Binding Proteins in the Nervous System during Hibernation: Neuroprotective Strategies in Hypometabolic Conditions?
    Gattoni G; Bernocchi G
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31086053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hibernation induces changes in the metacerebral neurons of Cornu aspersum: distribution and co-localization of cytoskeletal and calcium-binding proteins.
    Gattoni G; Insolia V; Bernocchi G
    Invert Neurosci; 2018 Oct; 18(4):13. PubMed ID: 30334231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hibernation-like neuroprotection in stroke by attenuating brain metabolic dysfunction.
    Forreider B; Pozivilko D; Kawaji Q; Geng X; Ding Y
    Prog Neurobiol; 2017 Oct; 157():174-187. PubMed ID: 26965388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Down regulation of sodium channels in the central nervous system of hibernating snails.
    Kiss T; Battonyai I; Pirger Z
    Physiol Behav; 2014 May; 131():93-8. PubMed ID: 24769022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance.
    Drew KL; Buck CL; Barnes BM; Christian SL; Rasley BT; Harris MB
    J Neurochem; 2007 Sep; 102(6):1713-1726. PubMed ID: 17555547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delta opioid peptide (D-Ala 2, D-Leu 5) enkephalin: linking hibernation and neuroprotection.
    Borlongan CV; Wang Y; Su TP
    Front Biosci; 2004 Sep; 9():3392-8. PubMed ID: 15353366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases.
    Drew KL; Rice ME; Kuhn TB; Smith MA
    Free Radic Biol Med; 2001 Sep; 31(5):563-73. PubMed ID: 11522441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAPKs are differentially modulated in arctic ground squirrels during hibernation.
    Zhu X; Smith MA; Perry G; Wang Y; Ross AP; Zhao HW; Lamanna JC; Drew KL
    J Neurosci Res; 2005 Jun; 80(6):862-8. PubMed ID: 15884016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cerebral neurons of Helix aspersa during hibernation. Changes in the cytochemical detection of calmodulin, cytoskeletal components and phosphatases.
    Vignola C; Fenoglio C; Scherini E; Bernocchi G
    Tissue Cell; 1995 Apr; 27(2):185-96. PubMed ID: 7539946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Pharmacological aspects of mammalian hibernation: central thermoregulation factors in hibernation cycle].
    Shiomi H; Tamura Y
    Nihon Yakurigaku Zasshi; 2000 Nov; 116(5):304-12. PubMed ID: 11215381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Endogenous hypometabolic-hypothermic factors and their possible application to life in the cold].
    Kramarova LI; Ziganshin RKh; Gakhova EN
    Bioorg Khim; 2009; 35(5):597-609. PubMed ID: 19915637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The role of the central nervous system in controlling hibernation].
    Belousov AV
    Usp Fiziol Nauk; 1993; 24(2):109-27. PubMed ID: 8498105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical changes of cytoskeleton components and calmodulin in the frog cerebellum and optic tectum during hibernation.
    Pisu MB; Scherini E; Bernocchi G
    J Chem Neuroanat; 1998 Aug; 15(2):63-73. PubMed ID: 9719360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-regulated metabolic suppression during hibernation: a neuroprotective mechanism for perinatal hypoxia-ischemia.
    Nathaniel TI
    Int J Stroke; 2008 May; 3(2):98-104. PubMed ID: 18706003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices.
    Frerichs KU; Hallenbeck JM
    J Cereb Blood Flow Metab; 1998 Feb; 18(2):168-75. PubMed ID: 9469159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hibernation model of tau phosphorylation in hamsters: selective vulnerability of cholinergic basal forebrain neurons - implications for Alzheimer's disease.
    Härtig W; Stieler J; Boerema AS; Wolf J; Schmidt U; Weissfuss J; Bullmann T; Strijkstra AM; Arendt T
    Eur J Neurosci; 2007 Jan; 25(1):69-80. PubMed ID: 17241268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CryomiRs: towards the identification of a cold-associated family of microRNAs.
    Lyons PJ; Lang-Ouellette D; Morin P
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Dec; 8(4):358-64. PubMed ID: 24212287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-Dependent Calcium Channels, Calcium Binding Proteins, and Their Interaction in the Pathological Process of Epilepsy.
    Xu JH; Tang FR
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Up-regulation of a non-kinase activity isoform of Ca(2+)/calmodulin-dependent protein kinase kinase beta1 (CaMKKbeta1) in hibernating bat brain.
    Yuan L; Chen J; Lin B; Liang B; Zhang S; Wu D
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Mar; 146(3):438-44. PubMed ID: 17258919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifications of the axon initial segment during the hibernation of the Syrian hamster.
    León-Espinosa G; Antón-Fernández A; Tapia-González S; DeFelipe J; Muñoz A
    Brain Struct Funct; 2018 Dec; 223(9):4307-4321. PubMed ID: 30219944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.