These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31086252)

  • 1. Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions.
    Gómez-Pastora J; Karampelas IH; Bringas E; Furlani EP; Ortiz I
    Sci Rep; 2019 May; 9(1):7265. PubMed ID: 31086252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification.
    Gómez-Pastora J; González-Fernández C; Real E; Iles A; Bringas E; Furlani EP; Ortiz I
    Lab Chip; 2018 May; 18(11):1593-1606. PubMed ID: 29748668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on magnetic bead motion characteristics based on magnetic beads preset technology.
    Li Z; Zu X; Du Z; Hu Z
    Sci Rep; 2021 Oct; 11(1):19995. PubMed ID: 34620919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capture and separation of biomolecules using magnetic beads in a simple microfluidic channel without an external flow device.
    Wang J; Morabito K; Erkers T; Tripathi A
    Analyst; 2013 Nov; 138(21):6573-81. PubMed ID: 24051541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-orthogonal bead oscillation in a microfluidic chip with a magnetic anisotropic flux-guide array.
    van Pelt S; Derks R; Matteucci M; Hansen MF; Dietzel A
    Biomed Microdevices; 2011 Apr; 13(2):353-9. PubMed ID: 21165700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells.
    Forbes TP; Forry SP
    Lab Chip; 2012 Apr; 12(8):1471-9. PubMed ID: 22395226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permanent magnet actuation for magnetic bead-based DNA extraction.
    Park CY; Park YH; Kim YS; Song HJ; Kim JD
    Biomed Eng Online; 2018 Nov; 17(Suppl 2):143. PubMed ID: 30396351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous microfluidic DNA extraction using phase-transfer magnetophoresis.
    Karle M; Miwa J; Czilwik G; Auwärter V; Roth G; Zengerle R; von Stetten F
    Lab Chip; 2010 Dec; 10(23):3284-90. PubMed ID: 20938545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic capturing-dynamics of paramagnetic bead suspensions.
    Mikkelsen C; Bruus H
    Lab Chip; 2005 Nov; 5(11):1293-7. PubMed ID: 16234954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bead-based microfluidic immunoassay for diagnosis of Johne's disease.
    Wadhwa A; Foote RS; Shaw RW; Eda S
    J Immunol Methods; 2012 Aug; 382(1-2):196-202. PubMed ID: 22705087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled magnetic bead chains for sensitivity enhancement of microfluidic electrochemical biosensor platforms.
    Armbrecht L; Dincer C; Kling A; Horak J; Kieninger J; Urban G
    Lab Chip; 2015 Nov; 15(22):4314-21. PubMed ID: 26394820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic flow switching design using volume of fluid model.
    Chein R; Tsai SH
    Biomed Microdevices; 2004 Mar; 6(1):81-90. PubMed ID: 15307449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated microfluidic system using a micro-fluxgate and micro spiral coil for magnetic microbeads trapping and detecting.
    Sun X; Feng Z; Zhi S; Lei C; Zhang D; Zhou Y
    Sci Rep; 2017 Oct; 7(1):12967. PubMed ID: 29021533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates.
    Pamme N; Manz A
    Anal Chem; 2004 Dec; 76(24):7250-6. PubMed ID: 15595866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous sample washing and concentration using a "trapping-and-releasing" mechanism of magnetic beads on a microfluidic chip.
    Ramadan Q; Gijs MA
    Analyst; 2011 Mar; 136(6):1157-66. PubMed ID: 21270982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.