These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31086486)

  • 1. Modeling the flowering sensitivity of five accessions of wild soybean (
    Ohigashi K; Mizuguti A; Nakatani K; Yoshimura Y; Matsuo K
    Breed Sci; 2019 Mar; 69(1):84-93. PubMed ID: 31086486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybridization between GM soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. et Zucc.) under field conditions in Japan.
    Mizuguti A; Ohigashi K; Yoshimura Y; Kaga A; Kuroda Y; Matsuo K
    Environ Biosafety Res; 2010; 9(1):13-23. PubMed ID: 21122483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphism of DNA sequences of cryptochrome genes is not associated with the photoperiodic flowering of wild soybean along a latitudinal cline.
    Ishibashi N; Setoguchi H
    J Plant Res; 2012 Jul; 125(4):483-8. PubMed ID: 22252378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean.
    Zhang Q; Li H; Li R; Hu R; Fan C; Chen F; Wang Z; Liu X; Fu Y; Lin C
    Proc Natl Acad Sci U S A; 2008 Dec; 105(52):21028-33. PubMed ID: 19106300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genetic basis of high-latitude adaptation in wild soybean.
    Dong L; Li S; Wang L; Su T; Zhang C; Bi Y; Lai Y; Kong L; Wang F; Pei X; Li H; Hou Z; Du H; Du H; Li T; Cheng Q; Fang C; Kong F; Liu B
    Curr Biol; 2023 Jan; 33(2):252-262.e4. PubMed ID: 36538932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean.
    Xu H; Abe J; Gai Y; Shimamoto Y
    Theor Appl Genet; 2002 Oct; 105(5):645-653. PubMed ID: 12582476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of field observations to characterise genotypic flowering responses to photoperiod and temperature: a soyabean exemplar.
    Roberts EH; Qi A; Ellis RH; Summerfield RJ; Lawn RJ; Shanmugasundaram S
    Theor Appl Genet; 1996 Sep; 93(4):519-33. PubMed ID: 24162343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions.
    Mao T; Li J; Wen Z; Wu T; Wu C; Sun S; Jiang B; Hou W; Li W; Song Q; Wang D; Han T
    BMC Genomics; 2017 May; 18(1):415. PubMed ID: 28549456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels.
    Waldeck N; Burkey K; Carter T; Dickey D; Song Q; Taliercio E
    BMC Genomics; 2017 Jun; 18(1):498. PubMed ID: 28662633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional marker development of miR1511-InDel and allelic diversity within the genus Glycine.
    Htwe NM; Luo ZQ; Jin LG; Nadon B; Wang KJ; Qiu LJ
    BMC Genomics; 2015 Jun; 16(1):467. PubMed ID: 26084707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the Effects of Photoperiod, Temperature and Daily Irradiance on Flowering Time of Soybean Isolines.
    Cober ER; Curtis DF; Stewart DW; Morrison MJ
    Plants (Basel); 2014 Nov; 3(4):476-97. PubMed ID: 27135515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Likelihood assessment for gene flow of transgenes from imported genetically modified soybean (
    Goto H; McPherson MA; Comstock BA; Stojšin D; Ohsawa R
    Breed Sci; 2017 Sep; 67(4):348-356. PubMed ID: 29085244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and comparison of three reference-quality genome assemblies for soybean.
    Valliyodan B; Cannon SB; Bayer PE; Shu S; Brown AV; Ren L; Jenkins J; Chung CY; Chan TF; Daum CG; Plott C; Hastie A; Baruch K; Barry KW; Huang W; Patil G; Varshney RK; Hu H; Batley J; Yuan Y; Song Q; Stupar RM; Goodstein DM; Stacey G; Lam HM; Jackson SA; Schmutz J; Grimwood J; Edwards D; Nguyen HT
    Plant J; 2019 Dec; 100(5):1066-1082. PubMed ID: 31433882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China.
    Wen Z; Ding Y; Zhao T; Gai J
    Theor Appl Genet; 2009 Jul; 119(2):371-81. PubMed ID: 19449177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation in GmGBP1 promoter affects photoperiod control of flowering time and maturity in soybean.
    Zhao L; Li M; Xu C; Yang X; Li D; Zhao X; Wang K; Li Y; Zhang X; Liu L; Ding F; Du H; Wang C; Sun J; Li W
    Plant J; 2018 Oct; 96(1):147-162. PubMed ID: 30004144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Natural and Simulated Herbivory on Wild Soybean (Glycine soja Seib. et Zucc.) for Use in Ecological Risk Assessment of Insect Protected Soybean.
    Goto H; Shimada H; Horak MJ; Ahmad A; Baltazar BM; Perez T; McPherson MA; Stojšin D; Shimono A; Ohsawa R
    PLoS One; 2016; 11(3):e0151237. PubMed ID: 26963815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of genetic change in the flowering phenology of sea beets along a latitudinal cline within two decades.
    Van Dijk H; Hautekèete NC
    J Evol Biol; 2014 Aug; 27(8):1572-81. PubMed ID: 24835689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and quantitative trait locus mapping of late-flowering from a Thai soybean cultivar introduced into a photoperiod-insensitive genetic background.
    Sun F; Xu M; Park C; Dwiyanti MS; Nagano AJ; Zhu J; Watanabe S; Kong F; Liu B; Yamada T; Abe J
    PLoS One; 2019; 14(12):e0226116. PubMed ID: 31805143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity and population structure: implications for conservation of wild soybean (Glycine soja Sieb. et Zucc) based on nuclear and chloroplast microsatellite variation.
    He S; Wang Y; Volis S; Li D; Yi T
    Int J Mol Sci; 2012 Oct; 13(10):12608-28. PubMed ID: 23202917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct Physiological Mechanisms Induce Latitudinal and Sexual Differences in the Photoperiodic Induction of Diapause in a Fly.
    Yamaguchi K; Goto SG
    J Biol Rhythms; 2019 Jun; 34(3):293-306. PubMed ID: 30966851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.