These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31086564)

  • 1. Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium
    Philipps G; de Vries S; Jennewein S
    Biotechnol Biofuels; 2019; 12():112. PubMed ID: 31086564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals.
    Zhang L; Zhao R; Jia D; Jiang W; Gu Y
    Curr Opin Chem Biol; 2020 Dec; 59():54-61. PubMed ID: 32480247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii.
    Huang H; Chai C; Yang S; Jiang W; Gu Y
    Metab Eng; 2019 Mar; 52():293-302. PubMed ID: 30633974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii.
    Yi J; Huang H; Liang J; Wang R; Liu Z; Li F; Wang S
    Microbiol Spectr; 2021 Oct; 9(2):e0095821. PubMed ID: 34643446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO
    Lauer I; Philipps G; Jennewein S
    Microb Cell Fact; 2022 May; 21(1):85. PubMed ID: 35568911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Engineering of Gas-Fermenting
    Jia D; He M; Tian Y; Shen S; Zhu X; Wang Y; Zhuang Y; Jiang W; Gu Y
    ACS Synth Biol; 2021 Oct; 10(10):2628-2638. PubMed ID: 34549587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis.
    Bengelsdorf FR; Poehlein A; Linder S; Erz C; Hummel T; Hoffmeister S; Daniel R; Dürre P
    Front Microbiol; 2016; 7():1036. PubMed ID: 27458439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii.
    Banerjee A; Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2014 Apr; 80(8):2410-6. PubMed ID: 24509933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic and Kinetic Modeling Directs Pathway Optimization for Isopropanol Production in a Gas-Fermenting Bacterium.
    Lo J; Wu C; Humphreys JR; Yang B; Jiang Z; Wang X; Maness P; Tsesmetzis N; Xiong W
    mSystems; 2023 Apr; 8(2):e0127422. PubMed ID: 36971551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traits of selected Clostridium strains for syngas fermentation to ethanol.
    Martin ME; Richter H; Saha S; Angenent LT
    Biotechnol Bioeng; 2016 Mar; 113(3):531-9. PubMed ID: 26331212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia.
    Brown SD; Nagaraju S; Utturkar S; De Tissera S; Segovia S; Mitchell W; Land ML; Dassanayake A; Köpke M
    Biotechnol Biofuels; 2014; 7():40. PubMed ID: 24655715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive Regulation of Formate Dehydrogenase during CO
    Zhang L; Liu Y; Zhao R; Zhang C; Jiang W; Gu Y
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528.
    Tan Y; Liu J; Liu Z; Li F
    J Basic Microbiol; 2014 Sep; 54(9):996-1004. PubMed ID: 23720212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domestication of the novel alcohologenic acetogen
    Lee J; Lee JW; Chae CG; Kwon SJ; Kim YJ; Lee JH; Lee HS
    Biotechnol Biofuels; 2019; 12():228. PubMed ID: 31572495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic modeling of synthesis gas fermentation in bubble column reactors.
    Chen J; Gomez JA; Höffner K; Barton PI; Henson MA
    Biotechnol Biofuels; 2015; 8():89. PubMed ID: 26106448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-culture of
    Richter H; Molitor B; Diender M; Sousa DZ; Angenent LT
    Front Microbiol; 2016; 7():1773. PubMed ID: 27877166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.