These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31087070)
1. Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts". Magge A; Sarker A; Nikfarjam A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2019 Jun; 26(6):577-579. PubMed ID: 31087070 [No Abstract] [Full Text] [Related]
2. Reply to comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts". Cocos A; Fiks AG; Masino AJ J Am Med Inform Assoc; 2019 Jun; 26(6):580-581. PubMed ID: 30980667 [TBL] [Abstract][Full Text] [Related]
3. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. Cocos A; Fiks AG; Masino AJ J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747 [TBL] [Abstract][Full Text] [Related]
4. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127 [TBL] [Abstract][Full Text] [Related]
5. DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter. Magge A; Tutubalina E; Miftahutdinov Z; Alimova I; Dirkson A; Verberne S; Weissenbacher D; Gonzalez-Hernandez G J Am Med Inform Assoc; 2021 Sep; 28(10):2184-2192. PubMed ID: 34270701 [TBL] [Abstract][Full Text] [Related]
6. Extraction of Medication-Effect Relations in Twitter Data with Neural Embedding and Recurrent Neural Network. Jiang K; Zhang D; Bernard GR Stud Health Technol Inform; 2022 Jun; 290():767-771. PubMed ID: 35673121 [TBL] [Abstract][Full Text] [Related]
7. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams. Eshleman R; Singh R BMC Bioinformatics; 2016 Oct; 17(Suppl 13):335. PubMed ID: 27766937 [TBL] [Abstract][Full Text] [Related]
8. Filtering big data from social media--Building an early warning system for adverse drug reactions. Yang M; Kiang M; Shang W J Biomed Inform; 2015 Apr; 54():230-40. PubMed ID: 25688695 [TBL] [Abstract][Full Text] [Related]
9. Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task. Sarker A; Belousov M; Friedrichs J; Hakala K; Kiritchenko S; Mehryary F; Han S; Tran T; Rios A; Kavuluru R; de Bruijn B; Ginter F; Mahata D; Mohammad SM; Nenadic G; Gonzalez-Hernandez G J Am Med Inform Assoc; 2018 Oct; 25(10):1274-1283. PubMed ID: 30272184 [TBL] [Abstract][Full Text] [Related]
10. SOCIAL MEDIA MINING SHARED TASK WORKSHOP. Sarker A; Nikfarjam A; Gonzalez G Pac Symp Biocomput; 2016; 21():581-92. PubMed ID: 26776221 [TBL] [Abstract][Full Text] [Related]
11. Exploring Spanish health social media for detecting drug effects. Segura-Bedmar I; Martínez P; Revert R; Moreno-Schneider J BMC Med Inform Decis Mak; 2015; 15 Suppl 2(Suppl 2):S6. PubMed ID: 26100267 [TBL] [Abstract][Full Text] [Related]
12. Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM. Hussain S; Afzal H; Saeed R; Iltaf N; Umair MY Comput Math Methods Med; 2021; 2021():5589829. PubMed ID: 34422092 [TBL] [Abstract][Full Text] [Related]
13. Sorting Through the Safety Data Haystack: Using Machine Learning to Identify Individual Case Safety Reports in Social-Digital Media. Comfort S; Perera S; Hudson Z; Dorrell D; Meireis S; Nagarajan M; Ramakrishnan C; Fine J Drug Saf; 2018 Jun; 41(6):579-590. PubMed ID: 29446035 [TBL] [Abstract][Full Text] [Related]
14. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Sarker A; Gonzalez G J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103 [TBL] [Abstract][Full Text] [Related]
15. Deep neural networks ensemble for detecting medication mentions in tweets. Weissenbacher D; Sarker A; Klein A; O'Connor K; Magge A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2019 Dec; 26(12):1618-1626. PubMed ID: 31562510 [TBL] [Abstract][Full Text] [Related]
16. Overview of the 8th Social Media Mining for Health Applications (#SMM4H) shared tasks at the AMIA 2023 Annual Symposium. Klein AZ; Banda JM; Guo Y; Schmidt AL; Xu D; Flores Amaro I; Rodriguez-Esteban R; Sarker A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2024 Apr; 31(4):991-996. PubMed ID: 38218723 [TBL] [Abstract][Full Text] [Related]
17. Exploring brand-name drug mentions on Twitter for pharmacovigilance. Carbonell P; Mayer MA; Bravo À Stud Health Technol Inform; 2015; 210():55-9. PubMed ID: 25991101 [TBL] [Abstract][Full Text] [Related]
18. Comparison of text processing methods in social media-based signal detection. Gavrielov-Yusim N; Kürzinger ML; Nishikawa C; Pan C; Pouget J; Epstein LB; Golant Y; Tcherny-Lessenot S; Lin S; Hamelin B; Juhaeri J Pharmacoepidemiol Drug Saf; 2019 Oct; 28(10):1309-1317. PubMed ID: 31392844 [TBL] [Abstract][Full Text] [Related]
19. A holistic AI-based approach for pharmacovigilance optimization from patients behavior on social media. Roche V; Robert JP; Salam H Artif Intell Med; 2023 Oct; 144():102638. PubMed ID: 37783543 [TBL] [Abstract][Full Text] [Related]
20. BERT-based language model for accurate drug adverse event extraction from social media: implementation, evaluation, and contributions to pharmacovigilance practices. Dong F; Guo W; Liu J; Patterson TA; Hong H Front Public Health; 2024; 12():1392180. PubMed ID: 38716250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]