BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31087289)

  • 1. High-Resolution Mass Spectrometry to Identify and Quantify Acetylation Protein Targets.
    Schilling B; Meyer JG; Wei L; Ott M; Verdin E
    Methods Mol Biol; 2019; 1983():3-16. PubMed ID: 31087289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification and Identification of Post-Translational Modifications Using Modern Proteomics Approaches.
    Holtz A; Basisty N; Schilling B
    Methods Mol Biol; 2021; 2228():225-235. PubMed ID: 33950494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of SAHA-Dependent Changes in Histone Modifications Using Data-Independent Acquisition Mass Spectrometry.
    Krautkramer KA; Reiter L; Denu JM; Dowell JA
    J Proteome Res; 2015 Aug; 14(8):3252-62. PubMed ID: 26120868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Quantification of the Acetylome and Succinylome by 'One-Pot' Affinity Enrichment.
    Basisty N; Meyer JG; Wei L; Gibson BW; Schilling B
    Proteomics; 2018 Sep; 18(17):e1800123. PubMed ID: 30035354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Protocol to Simultaneously Study Protein Phosphorylation, Acetylation, and N-Linked Sialylated Glycosylation.
    Melo-Braga MN; Ibáñez-Vea M; Kulej K; Larsen MR
    Methods Mol Biol; 2021; 2261():55-72. PubMed ID: 33420984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of Site-specific Protein Lysine Acetylation and Succinylation Stoichiometry Using Data-independent Acquisition Mass Spectrometry.
    Wei L; Meyer JG; Schilling B
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific determination of lysine acetylation stoichiometries on the proteome-scale.
    Chen Y; Li Y
    Methods Enzymol; 2019; 626():115-132. PubMed ID: 31606072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry.
    Tan H; Blanco DB; Xie B; Li Y; Wu Z; Chi H; Peng J
    Methods Mol Biol; 2021; 2285():297-317. PubMed ID: 33928561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected extensive lysine acetylation in the trump-card antibiotic producer Streptomyces roseosporus revealed by proteome-wide profiling.
    Liao G; Xie L; Li X; Cheng Z; Xie J
    J Proteomics; 2014 Jun; 106():260-9. PubMed ID: 24768905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Post-Translational Modifications from Serum/Plasma by Immunoaffinity Enrichment and LC-MS/MS Analysis Without Depletion of Abundant Proteins.
    Gu H; Ren J; Jia X; Stokes MP
    Methods Mol Biol; 2017; 1619():119-125. PubMed ID: 28674881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Affinity Enrichment of Two Post-Translational Modifications for Quantification and Site Localization.
    Xie X; Shah S; Holtz A; Rose J; Basisty N; Schilling B
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution Lysine Acetylome Profiling by Offline Fractionation and Immunoprecipitation.
    Giese J; Lassowskat I; Finkemeier I
    Methods Mol Biol; 2020; 2139():241-256. PubMed ID: 32462591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimethyl-Labeling-Based Quantification of the Lysine Acetylome and Proteome of Plants.
    Lassowskat I; Hartl M; Hosp F; Boersema PJ; Mann M; Finkemeier I
    Methods Mol Biol; 2017; 1653():65-81. PubMed ID: 28822126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH).
    Meyer JG; D'Souza AK; Sorensen DJ; Rardin MJ; Wolfe AJ; Gibson BW; Schilling B
    J Am Soc Mass Spectrom; 2016 Nov; 27(11):1758-1771. PubMed ID: 27590315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling of lysine-acetylated proteins in human urine.
    Qin W; Wang T; Huang H; Gao Y
    Sci China Life Sci; 2019 Nov; 62(11):1514-1520. PubMed ID: 30820853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-wide analysis of lysine acetylation in adult Schistosoma japonicum worm.
    Hong Y; Cao X; Han Q; Yuan C; Zhang M; Han Y; Zhu C; Lin T; Lu K; Li H; Fu Z; Lin J
    J Proteomics; 2016 Oct; 148():202-12. PubMed ID: 27535354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotopic Labeling and Quantitative Proteomics of Acetylation on Histones and Beyond.
    Lund PJ; Kori Y; Zhao X; Sidoli S; Yuan ZF; Garcia BA
    Methods Mol Biol; 2019; 1977():43-70. PubMed ID: 30980322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos.
    Kwon OK; Kim S; Lee S
    Electrophoresis; 2016 Dec; 37(23-24):3137-3145. PubMed ID: 27696471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation.
    Meng X; Lv Y; Mujahid H; Edelmann MJ; Zhao H; Peng X; Peng Z
    Biochim Biophys Acta Proteins Proteom; 2018 Mar; 1866(3):451-463. PubMed ID: 29313810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.