These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31087289)

  • 21. MSstatsPTM: Statistical Relative Quantification of Posttranslational Modifications in Bottom-Up Mass Spectrometry-Based Proteomics.
    Kohler D; Tsai TH; Verschueren E; Huang T; Hinkle T; Phu L; Choi M; Vitek O
    Mol Cell Proteomics; 2023 Jan; 22(1):100477. PubMed ID: 36496144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High resolution is not a strict requirement for characterization and quantification of histone post-translational modifications.
    Karch KR; Zee BM; Garcia BA
    J Proteome Res; 2014 Dec; 13(12):6152-9. PubMed ID: 25325711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Throughput Profiling of Proteome and Posttranslational Modifications by 16-Plex TMT Labeling and Mass Spectrometry.
    Yu K; Wang Z; Wu Z; Tan H; Mishra A; Peng J
    Methods Mol Biol; 2021; 2228():205-224. PubMed ID: 33950493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ubiquitin diGLY Proteomics as an Approach to Identify and Quantify the Ubiquitin-Modified Proteome.
    Fulzele A; Bennett EJ
    Methods Mol Biol; 2018; 1844():363-384. PubMed ID: 30242721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer's Disease Brain.
    Thomas SN; Yang AJ
    Methods Mol Biol; 2017; 1523():161-177. PubMed ID: 27975250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global Analysis of Protein Lysine Succinylation Profiles and Their Overlap with Lysine Acetylation in the Marine Bacterium Vibrio parahemolyticus.
    Pan J; Chen R; Li C; Li W; Ye Z
    J Proteome Res; 2015 Oct; 14(10):4309-18. PubMed ID: 26369940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ArgC-Like Digestion: Complementary or Alternative to Tryptic Digestion?
    Golghalyani V; Neupärtl M; Wittig I; Bahr U; Karas M
    J Proteome Res; 2017 Feb; 16(2):978-987. PubMed ID: 28051317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Combined Chemical Derivatization/Mass Spectrometric Method for the Enhanced Detection and Relative Quantification of Protein Ubiquitination.
    Chicooree N; Griffiths JR
    Methods Mol Biol; 2019; 1977():17-24. PubMed ID: 30980319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis.
    Liu S; Yu F; Yang Z; Wang T; Xiong H; Chang C; Yu W; Li N
    Mol Cell Proteomics; 2018 May; 17(5):1010-1027. PubMed ID: 29440448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. System-Wide Analysis of Protein Acetylation and Ubiquitination Reveals a Diversified Regulation in Human Cancer Cells.
    Kozuka-Hata H; Kitamura A; Hiroki T; Aizawa A; Tsumoto K; Inoue JI; Oyama M
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32155916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-Specific Lysine Acetylation Stoichiometry Across Subcellular Compartments.
    Lindahl AJ; Lawton AJ; Baeza J; Dowell JA; Denu JM
    Methods Mol Biol; 2019; 1983():79-106. PubMed ID: 31087294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in enrichment methods for mass spectrometry-based proteomics analysis of post-translational modifications.
    Brandi J; Noberini R; Bonaldi T; Cecconi D
    J Chromatogr A; 2022 Aug; 1678():463352. PubMed ID: 35896048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First acetyl-proteome profiling of Salmonella Typhimurium revealed involvement of lysine acetylation in drug resistance.
    Li L; Wang W; Zhang R; Xu J; Wang R; Wang L; Zhao X; Li J
    Vet Microbiol; 2018 Nov; 226():1-8. PubMed ID: 30389038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative Profiling of Post-translational Modifications by Immunoaffinity Enrichment and LC-MS/MS in Cancer Serum without Immunodepletion.
    Gu H; Ren JM; Jia X; Levy T; Rikova K; Yang V; Lee KA; Stokes MP; Silva JC
    Mol Cell Proteomics; 2016 Feb; 15(2):692-702. PubMed ID: 26635363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis.
    Xie L; Wang X; Zeng J; Zhou M; Duan X; Li Q; Zhang Z; Luo H; Pang L; Li W; Liao G; Yu X; Li Y; Huang H; Xie J
    Int J Biochem Cell Biol; 2015 Feb; 59():193-202. PubMed ID: 25456444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry.
    Larsen SC; Leutert M; Bilan V; Martello R; Jungmichel S; Young C; Hottiger MO; Nielsen ML
    Methods Mol Biol; 2017; 1608():149-162. PubMed ID: 28695509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive profiling of protein lysine acetylation in Escherichia coli.
    Zhang K; Zheng S; Yang JS; Chen Y; Cheng Z
    J Proteome Res; 2013 Feb; 12(2):844-51. PubMed ID: 23294111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow.
    Svinkina T; Gu H; Silva JC; Mertins P; Qiao J; Fereshetian S; Jaffe JD; Kuhn E; Udeshi ND; Carr SA
    Mol Cell Proteomics; 2015 Sep; 14(9):2429-40. PubMed ID: 25953088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-Specific Quantification of Lysine Acetylation Using Isotopic Labeling.
    Miyagi M
    Methods Enzymol; 2017; 586():85-95. PubMed ID: 28137578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.