These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31087289)

  • 61. Quantitative analysis of global protein lysine methylation by mass spectrometry.
    Lund PJ; Lehman SM; Garcia BA
    Methods Enzymol; 2019; 626():475-498. PubMed ID: 31606088
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea.
    Lv B; Yang Q; Li D; Liang W; Song L
    Sci Rep; 2016 Jul; 6():29313. PubMed ID: 27381557
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Functional Proteomic Analysis to Characterize Signaling Crosstalk.
    Pinto SM; Subbannayya Y; Prasad TSK
    Methods Mol Biol; 2019; 1871():197-224. PubMed ID: 30276742
    [TBL] [Abstract][Full Text] [Related]  

  • 64. SILProNAQ: A Convenient Approach for Proteome-Wide Analysis of Protein N-Termini and N-Terminal Acetylation Quantitation.
    Bienvenut WV; Giglione C; Meinnel T
    Methods Mol Biol; 2017; 1574():17-34. PubMed ID: 28315241
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-throughput, in-depth and estimated absolute quantification of plasma proteome using data-independent acquisition/mass spectrometry ("HIAP-DIA").
    Zhou Y; Tan Z; Xue P; Wang Y; Li X; Guan F
    Proteomics; 2021 Mar; 21(5):e2000264. PubMed ID: 33460299
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Treating Colon Cancer Cells with FK228 Reveals a Link between Histone Lysine Acetylation and Extensive Changes in the Cellular Proteome.
    Wang TY; Jia YL; Zhang X; Sun QL; Li YC; Zhang JH; Zhao CP; Wang XY; Wang L
    Sci Rep; 2015 Dec; 5():18443. PubMed ID: 26675280
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition.
    Jiang J; Gai Z; Wang Y; Fan K; Sun L; Wang H; Ding Z
    BMC Genomics; 2018 Nov; 19(1):840. PubMed ID: 30477445
    [TBL] [Abstract][Full Text] [Related]  

  • 68. DMSO as a mobile phase additive enhances detection of ubiquitination sites by nano-LC-ESI-MS/MS.
    Doellinger J; Grossegesse M; Nitsche A; Lasch P
    J Mass Spectrom; 2018 Feb; 53(2):183-187. PubMed ID: 29193534
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lysine Succinylation and Acetylation in Pseudomonas aeruginosa.
    Gaviard C; Broutin I; Cosette P; Dé E; Jouenne T; Hardouin J
    J Proteome Res; 2018 Jul; 17(7):2449-2459. PubMed ID: 29770699
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Protein lysine acetylation and its role in different human pathologies: a proteomic approach.
    Morales-Tarré O; Alonso-Bastida R; Arcos-Encarnación B; Pérez-Martínez L; Encarnación-Guevara S
    Expert Rev Proteomics; 2021 Nov; 18(11):949-975. PubMed ID: 34791964
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of Lysine Acetylation in Mycobacterium abscessus Using LC-MS/MS after Immunoprecipitation.
    Guo J; Wang C; Han Y; Liu Z; Wu T; Liu Y; Liu Y; Tan Y; Cai X; Cao Y; Wang B; Zhang B; Liu C; Tan S; Zhang T
    J Proteome Res; 2016 Aug; 15(8):2567-78. PubMed ID: 27323652
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simple strategies to enhance discovery of acetylation post-translational modifications by quadrupole-orbitrap LC-MS/MS.
    Manning AJ; Lee J; Wolfgeher DJ; Kron SJ; Greenberg JT
    Biochim Biophys Acta Proteins Proteom; 2018 Feb; 1866(2):224-229. PubMed ID: 29050961
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Doublet N-Terminal Oriented Proteomics for N-Terminomics and Proteolytic Processing Identification.
    Westermann B; Jacome ASV; Rompais M; Carapito C; Schaeffer-Reiss C
    Methods Mol Biol; 2017; 1574():77-90. PubMed ID: 28315244
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Lysine acetylation and cancer: A proteomics perspective.
    Gil J; Ramírez-Torres A; Encarnación-Guevara S
    J Proteomics; 2017 Jan; 150():297-309. PubMed ID: 27746255
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Status of large-scale analysis of post-translational modifications by mass spectrometry.
    Olsen JV; Mann M
    Mol Cell Proteomics; 2013 Dec; 12(12):3444-52. PubMed ID: 24187339
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of methylation and acetylation sites on mouse histone H3 using matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry.
    Cocklin RR; Wang M
    J Protein Chem; 2003 May; 22(4):327-34. PubMed ID: 13678296
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions.
    Brown CW; Sridhara V; Boutz DR; Person MD; Marcotte EM; Barrick JE; Wilke CO
    BMC Genomics; 2017 Apr; 18(1):301. PubMed ID: 28412930
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Proteomic-, Phosphoproteomic-, and Acetylomic-Based Mass Spectrometry to Identify Tissue-Specific Protein Complexes and Phosphorylation in Plant Gametogenesis.
    Sun L; Mo A; Lu P
    Methods Mol Biol; 2022; 2484():13-22. PubMed ID: 35461441
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An Integrated Workflow for Global, Glyco-, and Phospho-proteomic Analysis of Tumor Tissues.
    Zhou Y; Lih TM; Yang G; Chen SY; Chen L; Chan DW; Zhang H; Li QK
    Anal Chem; 2020 Jan; 92(2):1842-1849. PubMed ID: 31859488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.