BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 31087327)

  • 21. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification.
    Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V
    Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pancreas segmentation based on an adversarial model under two-tier constraints.
    Li M; Lian F; Guo S
    Phys Med Biol; 2020 Nov; 65(22):225021. PubMed ID: 32906095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients.
    Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J
    Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skin lesion segmentation via generative adversarial networks with dual discriminators.
    Lei B; Xia Z; Jiang F; Jiang X; Ge Z; Xu Y; Qin J; Chen S; Wang T; Wang S
    Med Image Anal; 2020 Aug; 64():101716. PubMed ID: 32492581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CSE-GAN: A 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation.
    Tyagi S; Talbar SN
    Comput Biol Med; 2022 Aug; 147():105781. PubMed ID: 35777084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cGAN-based tumor segmentation method for breast ultrasound images.
    You G; Qin Y; Zhao C; Zhao Y; Zhu K; Yang X; Li YL
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37276866
    [No Abstract]   [Full Text] [Related]  

  • 30. [Automatic three-dimensional segmentation of liver and tumors regions based on conditional generative adversarial networks].
    Zhang Z; Li B; Xu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Feb; 38(1):80-88. PubMed ID: 33899431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated stroke lesion segmentation in non-contrast CT scans using dense multi-path contextual generative adversarial network.
    Kuang H; Menon BK; Qiu W
    Phys Med Biol; 2020 Nov; 65(21):215013. PubMed ID: 32604080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can Generative Adversarial Networks help to overcome the limited data problem in segmentation?
    Heilemann G; Matthewman M; Kuess P; Goldner G; Widder J; Georg D; Zimmermann L
    Z Med Phys; 2022 Aug; 32(3):361-368. PubMed ID: 34930685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liver tumor segmentation in CT volumes using an adversarial densely connected network.
    Chen L; Song H; Wang C; Cui Y; Yang J; Hu X; Zhang L
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):587. PubMed ID: 31787071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves on In Vivo Confocal Microscopy Images.
    Yildiz E; Arslan AT; Yildiz Tas A; Acer AF; Demir S; Sahin A; Erol Barkana D
    Transl Vis Sci Technol; 2021 May; 10(6):33. PubMed ID: 34038501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
    Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM
    Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TMSF-Net: Multi-series fusion network with treeconnect for colorectal tumor segmentation.
    Chen C; Zhou K; Wang H; Lu Y; Wang Z; Xiao R; Lu T
    Comput Methods Programs Biomed; 2022 Mar; 215():106613. PubMed ID: 34998166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A generative adversarial network-based unsupervised domain adaptation method for magnetic resonance image segmentation].
    Sun Y; Liu J; Sun Z; Han J; Yu N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1181-1188. PubMed ID: 36575088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic segmentation of prostate magnetic resonance imaging using generative adversarial networks.
    Wang W; Wang G; Wu X; Ding X; Cao X; Wang L; Zhang J; Wang P
    Clin Imaging; 2021 Feb; 70():1-9. PubMed ID: 33120283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks.
    Ouhmich F; Agnus V; Noblet V; Heitz F; Pessaux P
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1275-1284. PubMed ID: 31041697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.