BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 31087359)

  • 1. Reconstruction of a high-quality volumetric image and a respiratory motion model from patient CBCT projections.
    Guo M; Chee G; O'Connell D; Dhou S; Fu J; Singhrao K; Ionascu D; Ruan D; Lee P; Low DA; Zhao J; Lewis JH
    Med Phys; 2019 Aug; 46(8):3627-3639. PubMed ID: 31087359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
    Wang J; Gu X
    Med Phys; 2013 Oct; 40(10):101912. PubMed ID: 24089914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. McSART: an iterative model-based, motion-compensated SART algorithm for CBCT reconstruction.
    Chee G; O'Connell D; Yang YM; Singhrao K; Low DA; Lewis JH
    Phys Med Biol; 2019 Apr; 64(9):095013. PubMed ID: 30776788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion compensated cone-beam CT reconstruction using an
    Lauria M; Miller C; Singhrao K; Lewis J; Lin W; O'Connell D; Naumann L; Stiehl B; Santhanam A; Boyle P; Raldow AC; Goldin J; Barjaktarevic I; Low DA
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38452385
    [No Abstract]   [Full Text] [Related]  

  • 5. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using groupwise deformable registration.
    Riblett MJ; Christensen GE; Weiss E; Hugo GD
    Med Phys; 2018 Oct; 45(10):4471-4482. PubMed ID: 30118177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D-Precise: Learning-based 3D motion estimation and high temporal resolution 4DCT reconstruction from treatment 2D+t X-ray projections.
    Zakeri A; Hokmabadi A; Nix MG; Gooya A; Wijesinghe I; Taylor ZA
    Comput Methods Programs Biomed; 2024 Jun; 250():108158. PubMed ID: 38604010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate.
    Fassi A; Schaerer J; Fernandes M; Riboldi M; Sarrut D; Baroni G
    Int J Radiat Oncol Biol Phys; 2014 Jan; 88(1):182-8. PubMed ID: 24331665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction.
    Huang X; Zhang Y; Wang J
    Phys Med Biol; 2018 Feb; 63(4):045002. PubMed ID: 29328048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction.
    Huang X; Zhang Y; Chen L; Wang J
    Med Phys; 2020 Jul; 47(7):3000-3012. PubMed ID: 32198934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot evaluation of a 4-dimensional cone-beam computed tomographic scheme based on simultaneous motion estimation and image reconstruction.
    Dang J; Gu X; Pan T; Wang J
    Int J Radiat Oncol Biol Phys; 2015 Feb; 91(2):410-8. PubMed ID: 25636763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
    Park JC; Zhang H; Chen Y; Fan Q; Li JG; Liu C; Lu B
    Phys Med Biol; 2015 Dec; 60(23):9157-83. PubMed ID: 26562284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous 4D-CBCT reconstruction with sliding motion constraint.
    Dang J; Yin FF; You T; Dai C; Chen D; Wang J
    Med Phys; 2016 Oct; 43(10):5453. PubMed ID: 27782722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four dimensional digital tomosynthesis using on-board imager for the verification of respiratory motion.
    Park JC; Kim JS; Park SH; Webster MJ; Lee S; Song WY; Han Y
    PLoS One; 2014; 9(12):e115795. PubMed ID: 25541710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actively triggered 4d cone-beam CT acquisition.
    Fast MF; Wisotzky E; Oelfke U; Nill S
    Med Phys; 2013 Sep; 40(9):091909. PubMed ID: 24007160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A longitudinal four-dimensional computed tomography and cone beam computed tomography dataset for image-guided radiation therapy research in lung cancer.
    Hugo GD; Weiss E; Sleeman WC; Balik S; Keall PJ; Lu J; Williamson JF
    Med Phys; 2017 Feb; 44(2):762-771. PubMed ID: 27991677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion-map constrained image reconstruction (MCIR): application to four-dimensional cone-beam computed tomography.
    Park JC; Kim JS; Park SH; Liu Z; Song B; Song WY
    Med Phys; 2013 Dec; 40(12):121710. PubMed ID: 24320496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor phase recognition using cone-beam computed tomography projections and external surrogate information.
    Tsai P; Yan G; Liu C; Hung YC; Kahler DL; Park JY; Potter N; Li JG; Lu B
    Med Phys; 2020 Oct; 47(10):5077-5089. PubMed ID: 32463944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy.
    Clements N; Kron T; Franich R; Dunn L; Roxby P; Aarons Y; Chesson B; Siva S; Duplan D; Ball D
    Med Phys; 2013 Feb; 40(2):021904. PubMed ID: 23387752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-the-fly motion-compensated cone-beam CT using an a priori model of the respiratory motion.
    Rit S; Wolthaus JW; van Herk M; Sonke JJ
    Med Phys; 2009 Jun; 36(6):2283-96. PubMed ID: 19610317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.