These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31087617)

  • 1. Motion of Enzyme-Powered Microshell Motors.
    Chen C; He Z; Wu J; Zhang X; Xia Q; Ju H
    Chem Asian J; 2019 Jul; 14(14):2491-2496. PubMed ID: 31087617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing.
    Zhang X; Chen C; Wu J; Ju H
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13581-13588. PubMed ID: 30888785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble.
    Pantarotto D; Browne WR; Feringa BL
    Chem Commun (Camb); 2008 Apr; (13):1533-5. PubMed ID: 18354790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refillable Fuel-Loading Microshell Motors for Persistent Motion in a Fuel-Free Environment.
    Wang D; Chen C; Sun J; Ao H; Xiao W; Ju H; Wu J
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Wettability-Directed Propulsion of Glucose-Powered Nanoflask Motors.
    Gao C; Zhou C; Lin Z; Yang M; He Q
    ACS Nano; 2019 Nov; 13(11):12758-12766. PubMed ID: 31621286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.
    Wang H; Sofer Z; Eng AY; Pumera M
    Chemistry; 2014 Nov; 20(46):14946-50. PubMed ID: 25293511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme molecules as nanomotors.
    Sengupta S; Dey KK; Muddana HS; Tabouillot T; Ibele ME; Butler PJ; Sen A
    J Am Chem Soc; 2013 Jan; 135(4):1406-14. PubMed ID: 23308365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-propelled chemically-powered plant-tissue biomotors.
    Gu Y; Sattayasamitsathit S; Kaufmann K; Vazquez-Duhalt R; Gao W; Wang C; Wang J
    Chem Commun (Camb); 2013 Aug; 49(66):7307-9. PubMed ID: 23851705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor.
    Abdelmohsen LK; Nijemeisland M; Pawar GM; Janssen GJ; Nolte RJ; van Hest JC; Wilson DA
    ACS Nano; 2016 Feb; 10(2):2652-60. PubMed ID: 26811982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond platinum: bubble-propelled micromotors based on Ag and MnO2 catalysts.
    Wang H; Zhao G; Pumera M
    J Am Chem Soc; 2014 Feb; 136(7):2719-22. PubMed ID: 24506544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous Motion of Bubble-Powered Carbonaceous Nanoflask Motors.
    Zhou C; Gao C; Lin Z; Wang D; Li Y; Yuan Y; Zhu B; He Q
    Langmuir; 2020 Jun; 36(25):7039-7045. PubMed ID: 31927899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of Fast Bubble-Driven Micromotors Powered by Biocompatible Fuel: Low-Concentration Fuel, Bioactive Fluid and Enzyme.
    Chi Q; Wang Z; Tian F; You J; Xu S
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodical bubble formation and the oscillatory change in dissolved oxygen concentration in a catalase-hydrogen peroxide system.
    Sasaki S
    Anal Sci; 2006 Jun; 22(6):903-5. PubMed ID: 16772694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers.
    Patiño T; Arqué X; Mestre R; Palacios L; Sánchez S
    Acc Chem Res; 2018 Nov; 51(11):2662-2671. PubMed ID: 30346732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a silver-based electrocatalyst for the determination of hydrogen peroxide formed via enzymatic oxidation.
    Gonzalez-Macia L; Smyth MR; Killard AJ
    Talanta; 2012 Sep; 99():989-96. PubMed ID: 22967653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions.
    Wang Y; Hernandez RM; Bartlett DJ; Bingham JM; Kline TR; Sen A; Mallouk TE
    Langmuir; 2006 Dec; 22(25):10451-6. PubMed ID: 17129015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection.
    Fu S; Zhang X; Xie Y; Wu J; Ju H
    Nanoscale; 2017 Jul; 9(26):9026-9033. PubMed ID: 28639653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tale of two forces: simultaneous chemical and acoustic propulsion of bimetallic micromotors.
    Wang W; Duan W; Zhang Z; Sun M; Sen A; Mallouk TE
    Chem Commun (Camb); 2015 Jan; 51(6):1020-3. PubMed ID: 25434824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Janus-micromotor-based on-off luminescence sensor for active TNT detection.
    Yuan Y; Gao C; Wang D; Zhou C; Zhu B; He Q
    Beilstein J Nanotechnol; 2019; 10():1324-1331. PubMed ID: 31293869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous movement of controllable assembled Janus capsule motors.
    Wu Y; Wu Z; Lin X; He Q; Li J
    ACS Nano; 2012 Dec; 6(12):10910-6. PubMed ID: 23153409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.