These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31087651)

  • 1. Signatures of stress: Pilot study of accentuated laminations in porcine enamel.
    Skinner M; Byra C
    Am J Phys Anthropol; 2019 Aug; 169(4):619-631. PubMed ID: 31087651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pig enamel revisited - Incremental markings in enamel of wild boars and domestic pigs.
    Kierdorf H; Breuer F; Witzel C; Kierdorf U
    J Struct Biol; 2019 Jan; 205(1):48-59. PubMed ID: 30472171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of enamel incremental markings and crown growth parameters in minipig molars.
    Kierdorf H; Breuer F; Richards A; Kierdorf U
    Anat Rec (Hoboken); 2014 Oct; 297(10):1935-49. PubMed ID: 24841748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of short-period and long-period incremental markings in porcine enamel and dentine-Results of a fluorochrome labelling study in wild boar and domestic pigs.
    Emken S; Witzel C; Kierdorf U; Frölich K; Kierdorf H
    J Anat; 2021 Nov; 239(5):1207-1220. PubMed ID: 34240412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth response of dental tissues to developmental stress in the domestic pig (Sus scrofa).
    Skinner MF; Imbrasas MD; Byra C; Skinner MM
    Am J Phys Anthropol; 2019 Apr; 168(4):764-788. PubMed ID: 30771253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity and constraint in response to early-life stressors among late/final Jomon period foragers from Japan: evidence for life history trade-offs from incremental microstructures of enamel.
    Temple DH
    Am J Phys Anthropol; 2014 Dec; 155(4):537-45. PubMed ID: 25156299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disturbed enamel formation in wild boars (Sus scrofa L.) from fluoride polluted areas in Central Europe.
    Kierdorf H; Kierdorf U; Richards A; Sedlacek F
    Anat Rec; 2000 May; 259(1):12-24. PubMed ID: 10760739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lines of evidence-incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study.
    Kierdorf H; Kierdorf U; Frölich K; Witzel C
    PLoS One; 2013; 8(9):e74597. PubMed ID: 24040293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wild boar versus domestic pig-Deciphering of crown growth in porcine second molars.
    Emken S; Witzel C; Kierdorf U; Frölich K; Kierdorf H
    J Anat; 2023 Jun; 242(6):1078-1095. PubMed ID: 36774334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship of accentuated lines in enamel to weaning stress in juvenile baboons (Papio hamadryas anubis).
    Dirks W; Humphrey LT; Dean MC; Jeffries TE
    Folia Primatol (Basel); 2010; 81(4):207-23. PubMed ID: 21124031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory.
    Wright LE; Schwarcz HP
    Am J Phys Anthropol; 1998 May; 106(1):1-18. PubMed ID: 9590521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First permanent molars with accentuated line patterns: Assessment of childhood health in an urban complex of the fifth millennium before the present.
    Lorentz KO; Lemmers SAM; Chrysostomou C; Dirks W; Zaruri RM; Foruzanfar F; Sajjadi SMS
    Arch Oral Biol; 2021 Mar; 123():104969. PubMed ID: 33450640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental determination of the periodicity of incremental features in enamel.
    Smith TM
    J Anat; 2006 Jan; 208(1):99-113. PubMed ID: 16420383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Test of histological methods of determining chronology of accentuated striae in deciduous teeth.
    FitzGerald CM; Saunders SR
    Am J Phys Anthropol; 2005 Jul; 127(3):277-90. PubMed ID: 15584065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Onset of molar incisor hypomineralization (MIH).
    Fagrell TG; Salmon P; Melin L; Norén JG
    Swed Dent J; 2013; 37(2):61-70. PubMed ID: 23957140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of periodicity of repetitive linear enamel hypoplasia from perikymata counts on imbricational enamel among dry-adapted chimpanzees (Pan troglodytes verus) from Fongoli, Senegal.
    Skinner MF; Pruetz JD
    Am J Phys Anthropol; 2012 Nov; 149(3):468-82. PubMed ID: 23041791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enamel microstructure and microstrain in the fracture of human and pig molar cusps.
    Popowics TE; Rensberger JM; Herring SW
    Arch Oral Biol; 2004 Aug; 49(8):595-605. PubMed ID: 15196977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental stress increases variability in the expression of dental cusps.
    Riga A; Belcastro MG; Moggi-Cecchi J
    Am J Phys Anthropol; 2014 Mar; 153(3):397-407. PubMed ID: 24264332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accentuated lines in the enamel of primary incisors from skeletal remains: A contribution to the explanation of early childhood mortality in a medieval population from Poland.
    Żądzińska E; Lorkiewicz W; Kurek M; Borowska-Strugińska B
    Am J Phys Anthropol; 2015 Jul; 157(3):402-10. PubMed ID: 25711723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluoride-induced alterations of enamel structure: an experimental study in the miniature pig.
    Kierdorf H; Kierdorf U; Richards A; Josephsen K
    Anat Embryol (Berl); 2004 Mar; 207(6):463-74. PubMed ID: 14760533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.