BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 31087700)

  • 1. Advanced Polymer Designs for Direct-Ink-Write 3D Printing.
    Li L; Lin Q; Tang M; Duncan AJE; Ke C
    Chemistry; 2019 Aug; 25(46):10768-10781. PubMed ID: 31087700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced supramolecular design for direct ink writing of soft materials.
    Tang M; Zhong Z; Ke C
    Chem Soc Rev; 2023 Mar; 52(5):1614-1649. PubMed ID: 36779285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Ink Writing: A 3D Printing Technology for Diverse Materials.
    Saadi MASR; Maguire A; Pottackal NT; Thakur MSH; Ikram MM; Hart AJ; Ajayan PM; Rahman MM
    Adv Mater; 2022 Jul; 34(28):e2108855. PubMed ID: 35246886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications.
    Baniasadi H; Abidnejad R; Fazeli M; Lipponen J; Niskanen J; Kontturi E; Seppälä J; Rojas OJ
    Adv Colloid Interface Sci; 2024 Feb; 324():103095. PubMed ID: 38301316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.
    Raj R; Dixit AR
    3D Print Addit Manuf; 2023 Aug; 10(4):828-854. PubMed ID: 37609584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitin nanocrystals assisted 3D printing of polycitrate thermoset bioelastomers.
    Gu S; Tian Y; Liang K; Ji Y
    Carbohydr Polym; 2021 Mar; 256():117549. PubMed ID: 33483056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization.
    McCracken JM; Rauzan BM; Kjellman JCE; Kandel ME; Liu YH; Badea A; Miller LA; Rogers SA; Popescu G; Nuzzo RG
    Adv Healthc Mater; 2019 Jan; 8(1):e1800788. PubMed ID: 30565889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices.
    Lu G; Tang R; Nie J; Zhu X
    Macromol Rapid Commun; 2024 Apr; 45(7):e2300661. PubMed ID: 38271638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots.
    Cheng Y; Chan KH; Wang XQ; Ding T; Li T; Lu X; Ho GW
    ACS Nano; 2019 Nov; 13(11):13176-13184. PubMed ID: 31625724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct-ink-write printing of hydrogels using dilute inks.
    Li X; Zhang P; Li Q; Wang H; Yang C
    iScience; 2021 Apr; 24(4):102319. PubMed ID: 33870134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform.
    Imani KBC; Jo A; Choi GM; Kim B; Chung JW; Lee HS; Yoon J
    Macromol Rapid Commun; 2022 Jan; 43(2):e2100579. PubMed ID: 34708464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels.
    Jiang P; Yan C; Guo Y; Zhang X; Cai M; Jia X; Wang X; Zhou F
    Biomater Sci; 2019 Apr; 7(5):1805-1814. PubMed ID: 30855616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical biomaterials via photopatterning-enhanced direct ink writing.
    Guzzi EA; Bischof R; Dranseikiene D; Deshmukh DV; Wahlsten A; Bovone G; Bernhard S; Tibbitt MW
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34433148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal Nanocarrier Ink Platform for Biomaterials Additive Manufacturing.
    Guzzi EA; Bovone G; Tibbitt MW
    Small; 2019 Dec; 15(51):e1905421. PubMed ID: 31762197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printable Conducting and Biocompatible PEDOT-graft-PLA Copolymers by Direct Ink Writing.
    Dominguez-Alfaro A; Gabirondo E; Alegret N; De León-Almazán CM; Hernandez R; Vallejo-Illarramendi A; Prato M; Mecerreyes D
    Macromol Rapid Commun; 2021 Jun; 42(12):e2100100. PubMed ID: 33938086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges.
    Shahbazi M; Jäger H
    ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct ink writing of porous titanium (Ti6Al4V) lattice structures.
    Elsayed H; Rebesan P; Giacomello G; Pasetto M; Gardin C; Ferroni L; Zavan B; Biasetto L
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109794. PubMed ID: 31349412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.