These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 31087780)
1. Indocyanine green based fluorescent polymeric nanoprobes for in vitro imaging. Ege ZR; Akan A; Oktar FN; Lin CC; Kuruca DS; Karademir B; Sahin YM; Erdemir G; Gunduz O J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):538-554. PubMed ID: 31087780 [TBL] [Abstract][Full Text] [Related]
2. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Wu L; Fang S; Shi S; Deng J; Liu B; Cai L Biomacromolecules; 2013 Sep; 14(9):3027-33. PubMed ID: 23941524 [TBL] [Abstract][Full Text] [Related]
3. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Zheng C; Zheng M; Gong P; Jia D; Zhang P; Shi B; Sheng Z; Ma Y; Cai L Biomaterials; 2012 Aug; 33(22):5603-9. PubMed ID: 22575835 [TBL] [Abstract][Full Text] [Related]
4. Encapsulation of indocyanine green into cell membrane capsules for photothermal cancer therapy. Sheng G; Chen Y; Han L; Huang Y; Liu X; Li L; Mao Z Acta Biomater; 2016 Oct; 43():251-261. PubMed ID: 27422197 [TBL] [Abstract][Full Text] [Related]
5. Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs. Bahmani B; Lytle CY; Walker AM; Gupta S; Vullev VI; Anvari B Int J Nanomedicine; 2013; 8():1609-20. PubMed ID: 23637530 [TBL] [Abstract][Full Text] [Related]
6. Tumor-Activatable Clinical Nanoprobe for Cancer Imaging. Reichel D; Tripathi M; Butte P; Saouaf R; Perez JM Nanotheranostics; 2019; 3(2):196-211. PubMed ID: 31183314 [No Abstract] [Full Text] [Related]
7. Engineering of near infrared fluorescent proteinoid-poly(L-lactic acid) particles for in vivo colon cancer detection. Kolitz-Domb M; Grinberg I; Corem-Salkmon E; Margel S J Nanobiotechnology; 2014 Aug; 12():30. PubMed ID: 25113279 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of bovine serum albumin-coated nanocapsules loaded with indocyanine green as potential multifunctional nanoconstructs. Jung B; Anvari B Biotechnol Prog; 2012; 28(2):533-9. PubMed ID: 22002955 [TBL] [Abstract][Full Text] [Related]
9. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide. Sharker SM; Lee JE; Kim SH; Jeong JH; In I; Lee H; Park SY Biomaterials; 2015 Aug; 61():229-38. PubMed ID: 26005762 [TBL] [Abstract][Full Text] [Related]
10. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery. Xin Y; Liu T; Yang C Int J Nanomedicine; 2016; 11():5807-5821. PubMed ID: 27853366 [TBL] [Abstract][Full Text] [Related]
11. Near infrared dye indocyanine green doped silica nanoparticles for biological imaging. Quan B; Choi K; Kim YH; Kang KW; Chung DS Talanta; 2012 Sep; 99():387-93. PubMed ID: 22967569 [TBL] [Abstract][Full Text] [Related]
13. Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging. Rodriguez VB; Henry SM; Hoffman AS; Stayton PS; Li X; Pun SH J Biomed Opt; 2008; 13(1):014025. PubMed ID: 18315383 [TBL] [Abstract][Full Text] [Related]
14. Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release. Lajunen T; Kontturi LS; Viitala L; Manna M; Cramariuc O; Róg T; Bunker A; Laaksonen T; Viitala T; Murtomäki L; Urtti A Mol Pharm; 2016 Jun; 13(6):2095-107. PubMed ID: 27097108 [TBL] [Abstract][Full Text] [Related]
15. Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging. Sharma P; Bengtsson NE; Walter GA; Sohn HB; Zhou G; Iwakuma N; Zeng H; Grobmyer SR; Scott EW; Moudgil BM Small; 2012 Sep; 8(18):2856-68. PubMed ID: 22744832 [TBL] [Abstract][Full Text] [Related]
16. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Zhao P; Zheng M; Yue C; Luo Z; Gong P; Gao G; Sheng Z; Zheng C; Cai L Biomaterials; 2014 Jul; 35(23):6037-46. PubMed ID: 24776486 [TBL] [Abstract][Full Text] [Related]
17. Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release. Saxena V; Sadoqi M; Shao J Int J Pharm; 2004 Jul; 278(2):293-301. PubMed ID: 15196634 [TBL] [Abstract][Full Text] [Related]
18. Sertraline/ICG-loaded liposome for dual-modality imaging and effective chemo-photothermal combination therapy against metastatic clear cell renal cell carcinoma. Lei Y; Zeng L; Xie S; Fan K; Yu Y; Chen J; Zhang S; Wang Z; Zhong L Chem Biol Drug Des; 2020 Mar; 95(3):320-331. PubMed ID: 31820570 [TBL] [Abstract][Full Text] [Related]
19. Indocyanine green-carrying polymeric nanoparticles with acid-triggered detachable PEG coating and drug release for boosting cancer photothermal therapy. Ting CW; Chou YH; Huang SY; Chiang WH Colloids Surf B Biointerfaces; 2021 Dec; 208():112048. PubMed ID: 34419806 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of temperature-sensitive, indocyanine green-encapsulating micelles for noninvasive near-infrared tumor imaging. Kim TH; Chen Y; Mount CW; Gombotz WR; Li X; Pun SH Pharm Res; 2010 Sep; 27(9):1900-13. PubMed ID: 20568000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]