These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 310878)

  • 1. Non linear volume flow dependence on osmotic pressure difference in frog skin.
    Celentano F; Monticelli G; Orsenigo MN
    J Physiol (Paris); 1978; 74(4):365-7. PubMed ID: 310878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT; Schlegel WM
    Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Determination, using a piezo-impulse method, of iso-osmotic permeability of the apical membrane of epithelium].
    Eyraud C; Dubief MC; Charmasson R
    C R Acad Sci III; 1985; 300(14):503-8. PubMed ID: 3922570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride conductance of frog skin: localization to the tight junctions?
    Nagel W
    Miner Electrolyte Metab; 1989; 15(3):163-70. PubMed ID: 2471051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Hypertonic solutions and intracranial pressure].
    Favre JB; Ravussin P; Chiolero R; Bissonnette B
    Schweiz Med Wochenschr; 1996 Sep; 126(39):1635-43. PubMed ID: 8927967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane water permeability alterations induced by pollutants.
    Celentano F; Monticelli G; Orsenigo MN
    J Environ Sci Health C; 1979; 13(4):301-14. PubMed ID: 318022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volumetric flow across frog skin "in vitro".
    Celentano F; Monticelli G; Torelli G
    Arch Fisiol; 1973 Jun; 70(1-2):42-4. PubMed ID: 4547348
    [No Abstract]   [Full Text] [Related]  

  • 8. Transport of non-electrolyte solutions through membrane with concentration polarization.
    Grzegorczyn S; Jasik-Slezak J; Michalska-Małecka K; Slezak A
    Gen Physiol Biophys; 2008 Dec; 27(4):315-21. PubMed ID: 19202206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opening of tight junctions in frog skin by hypertonic urea solutions.
    Erlij D; Martínez-Palomo A
    J Membr Biol; 1972; 9(3):229-40. PubMed ID: 4538943
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanism of action of extracts of the posthypophysis on water transport through the skin of the frog (Rana esculenta).
    CAPRARO V; BERNINI G
    Nature; 1952 Mar; 169(4298):454. PubMed ID: 14919599
    [No Abstract]   [Full Text] [Related]  

  • 11. Persistence of an aldosterone influence on active sodium transport upon exposure of frog skin to ouabain.
    Crabbé J; Decoene A
    Arch Int Physiol Biochim; 1974; 82(2):343-6. PubMed ID: 4135877
    [No Abstract]   [Full Text] [Related]  

  • 12. External solution driving forces for isotonic fluid absorption in proximal tubules.
    Andreoli TE; Schafer JA
    Fed Proc; 1979 Feb; 38(2):154-60. PubMed ID: 761648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cyclophosphamide vinblastine and nitracrine on bioelectric properties of the frog skin epithelium in vitro.
    Wieraszko E
    Arch Immunol Ther Exp (Warsz); 1980; 28(5):791-803. PubMed ID: 6971082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of skin hydration and its barrier function by vehicle and permeation enhancers: a study using TGA, FTIR, TEWL and drug permeation as markers.
    Shah DK; Khandavilli S; Panchagnula R
    Methods Find Exp Clin Pharmacol; 2008 Sep; 30(7):499-512. PubMed ID: 18985178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of hydrostatic pressure difference on potential difference and short-circuit current across the frog skin].
    von Stackelberg WF
    Pflugers Arch; 1969; 307(2):R55. PubMed ID: 5814867
    [No Abstract]   [Full Text] [Related]  

  • 16. Transepithelial transport of sodium and chloride ions in isolated skin of the frog, Rana esculenta L.
    Kosik-Bogacka DI; Tyrakowski T
    Folia Biol (Krakow); 2002; 50(3-4):107-14. PubMed ID: 12729155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morpho-functional study of hypothalamic neurosecretion. IV. The effect of osmotic stress on the preoptico-neurohypophysial system of Rana esculenta, Rana temporaria, and Xenopus laevis.
    Srebro Z
    Folia Biol (Krakow); 1970; 18(3):231-5. PubMed ID: 5493990
    [No Abstract]   [Full Text] [Related]  

  • 18. Hydrosmotic effect of vasopressin in frog skin of Rana esculenta: effect of calcium ionophore A23187.
    Svelto M; Casavola V
    Boll Soc Ital Biol Sper; 1984 May; 60 Suppl 4():201-5. PubMed ID: 6432007
    [No Abstract]   [Full Text] [Related]  

  • 19. A central Na+ receptor and its influence on osmotic and angiotensin II induced drinking in the pigeon Columbia livia.
    Thornton SN
    J Physiol (Paris); 1984; 79(6):505-10. PubMed ID: 6443127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions].
    Slezak A; Grzegorczyn S
    Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.