BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31087887)

  • 1. [Remediation Potential of
    Zhang YX; Song B; Bin J; Zhou ZY; Chen JL; Chen TB
    Huan Jing Ke Xue; 2019 May; 40(5):2453-2459. PubMed ID: 31087887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual tolerance of ageratum (Ageratum conyzoides L.) to combined pollution of acid and cadmium: Field survey and pot experiment.
    Wang Z; Wang H; Wang H; Qin Y; Cui S; Wang G
    J Environ Manage; 2023 Jan; 326(Pt A):116677. PubMed ID: 36356537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Subcellular Distribution and Chemical Forms of Heavy Metals in Three Types of Compositae Plants from Lead-Zinc Tailings Area].
    Zhu GX; Xiao HY; Guo QJ; Zhang ZY; Yang X; Kong J
    Huan Jing Ke Xue; 2017 Jul; 38(7):3054-3060. PubMed ID: 29964649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Remediation Potential of
    Zhang H; Xiong MB; Wang QX; Sun BW; Rao YC; Cheng Z; Xu XX; Yang ZB; Xian JR; Zhu XM; Yang SP; Yang YX
    Huan Jing Ke Xue; 2022 Aug; 43(8):4253-4261. PubMed ID: 35971721
    [No Abstract]   [Full Text] [Related]  

  • 5. Biocompatible metal decontamination from soil using Ageratum conyzoides.
    Sharma V; Pant D
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):22294-22307. PubMed ID: 29808403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two cadmium-resistant bacteria Burkholderia contaminans HA09 and Arthrobacter humicola improve phytoremediation efficiency of cadmium in Ageratum conyzoides L.
    Wang Z; Zhang D; He Z; Luo Y; Wang H
    J Environ Manage; 2024 Jun; 362():121250. PubMed ID: 38833921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of four endophytic bacteria on cadmium speciation and remediation efficiency of Sedum plumbizincicola in farmland soil.
    Cheng X; Cao X; Tan C; Liu L; Bai J; Liang Y; Cai R
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89557-89569. PubMed ID: 35852747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Strengthening the effect of
    Deng YQ; Cao XY; Tan CY; Sun LJ; Peng X; Bai J; Huang SP
    Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3111-3118. PubMed ID: 33345513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.
    Wang Q; Gu M; Ma X; Zhang H; Wang Y; Cui J; Gao W; Gui J
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16758-71. PubMed ID: 26092360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla.
    Song X; Hu X; Ji P; Li Y; Chi G; Song Y
    Bull Environ Contam Toxicol; 2012 Apr; 88(4):623-6. PubMed ID: 22286610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants.
    Zhu G; Xiao H; Guo Q; Zhang Z; Zhao J; Yang D
    Ecotoxicol Environ Saf; 2018 Aug; 158():300-308. PubMed ID: 29727812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Characteristics of Cadmium Concentration and Transport of
    Lin XB; He SL; Wu DJ; Zhou LJ; Wu L; Peng J; Huang SS; Wang BQ; Huang QR; Wu JF
    Huan Jing Ke Xue; 2023 Oct; 44(10):5769-5778. PubMed ID: 37827792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium removal potential of hyperaccumulator Solanum nigrum L. under two planting modes in three years continuous phytoremediation.
    Dou X; Dai H; Skuza L; Wei S
    Environ Pollut; 2022 Aug; 307():119493. PubMed ID: 35597484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China.
    Tang X; Li Q; Wu M; Lin L; Scholz M
    J Environ Manage; 2016 Oct; 181():646-662. PubMed ID: 27562701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of Chelate GLDA on the Remediation of Cadmium Contaminated Farmland by
    Qin JJ; Tang SS; Jiang K; Huang J; Hou HB; Long J; Peng PQ
    Huan Jing Ke Xue; 2020 Aug; 41(8):3862-3869. PubMed ID: 33124364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects and mechanism of alkaline wastes application and zinc fertilizer addition on Cd bioavailability in contaminated soil].
    Liu ZB; Ji XH; Tian FX; Peng H; Wu JM; Shi LH
    Huan Jing Ke Xue; 2011 Apr; 32(4):1164-70. PubMed ID: 21717764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic evaluation of ramie (Boehmeria nivea L.) for phytoremediation of cadmium contaminated soil and the mechanism of microbial regulation.
    Chen K; Li Y; Yu C; Chen P; Chen J; Gao G; Wang X; Xiong H; Zhu A
    Chemosphere; 2023 Oct; 337():139298. PubMed ID: 37391082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive Inhibitory Effect of Calcium Polypeptides on Cd Enrichment of
    Chen H; Shu F; Yang S; Li Y; Wang S
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31739390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of
    Levita J; Alfiana A; Bernadette M; Fajri Nuwarda R; Sumiwi SA; Saptarini NM; Amien S
    Pak J Biol Sci; 2021 Jan; 24(8):840-846. PubMed ID: 34486351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.