These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31087978)

  • 21. Coupling microscale zero-valent iron and autotrophic hydrogen-bacteria provides a sustainable remediation solution for trichloroethylene-contaminated groundwater: Mechanisms, regulation, and engineering implications.
    Yuan M; Xin J; Wang X; Zhao F; Wang L; Liu M
    Water Res; 2022 Jun; 216():118286. PubMed ID: 35339054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced dechlorination of trichloroethene by sulfidated microscale zero-valent iron under low-frequency AC electromagnetic field.
    He F; Yu Y; Wan W; Liang L
    J Hazard Mater; 2022 Feb; 423(Pt A):127020. PubMed ID: 34481402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media.
    Xin J; Tang F; Zheng X; Shao H; Kolditz O
    Water Res; 2016 Jan; 88():199-206. PubMed ID: 26497937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Achieving sustainable trichloroethylene removal from nitrate-containing groundwater: Effects of particle size and dosage of microscale zero-valent iron on its synergistic action with anaerobic bacteria.
    Zhao F; Xin J; Wang L; Chen L; Wang X; Yuan M
    J Environ Manage; 2024 Jul; 366():121630. PubMed ID: 38986381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the efficiency of microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) for TCE removal in fresh and saline groundwater.
    Xin J; Tang F; Yan J; La C; Zheng X; Liu W
    Sci Total Environ; 2018 Jun; 626():638-649. PubMed ID: 29898552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of biostimulation and bioaugmentation for removing chlorinated volatile organic compounds from groundwater at a former manufacture plant.
    Zhang S; Hou Z; Du XM; Li DM; Lu XX
    Biodegradation; 2016 Nov; 27(4-6):223-236. PubMed ID: 27351716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remediation of trichloroethylene by microscale zero-valent iron aged under various groundwater conditions: Removal mechanism and physicochemical transformation.
    Tang F; Tian F; Zhang L; Yang X; Xin J; Zheng X
    Sci Total Environ; 2021 Jun; 775():145757. PubMed ID: 33611180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of As from groundwater by in situ bioprecipitation and zero-valent iron.
    Tkaczynska A
    Water Sci Technol; 2013; 68(9):2055-60. PubMed ID: 24225108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using sequential H
    Le ST; Israpanich A; Phenrat T
    Chemosphere; 2022 Oct; 305():135376. PubMed ID: 35716714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic biodegradation of ethylene dibromide and 1,2-dichloroethane in the presence of fuel hydrocarbons.
    Henderson JK; Freedman DL; Falta RW; Kuder T; Wilson JT
    Environ Sci Technol; 2008 Feb; 42(3):864-70. PubMed ID: 18323114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites.
    Scheutz C; Durant ND; Broholm MM
    Biodegradation; 2014 Jun; 25(3):459-78. PubMed ID: 24233554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FeN
    Gong L; Qiu X; Tratnyek PG; Liu C; He F
    Environ Sci Technol; 2021 Apr; 55(8):5393-5402. PubMed ID: 33729752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction.
    Ambika S; Devasena M; Nambi IM
    J Environ Manage; 2016 Oct; 181():847-855. PubMed ID: 27397842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of sulfidation on nitrobenzene removal from groundwater by microscale zero-valent iron: Insights into reactivity, reaction sites and removal pathways.
    He K; Sun R; Yang D; Wang S; Shu J; Wan W; Pan Y; Qin F; He F; Liang L
    Chemosphere; 2023 Jan; 310():136819. PubMed ID: 36241117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant.
    Zou H; Hu E; Yang S; Gong L; He F
    Sci Total Environ; 2019 Feb; 650(Pt 1):419-426. PubMed ID: 30199686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of coupled zero-valent iron/biochar system for degradation of chlorobenzene-contaminated groundwater.
    Zhang X; Wu Y
    Water Sci Technol; 2017 Feb; 75(3-4):571-580. PubMed ID: 28192351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Groundwater denitrification enhanced by a hydrogel immobilized iron/solid carbon source: impact on denitrification and substrate release performance.
    Yu W; Liu L; Yan N; Zheng X
    Environ Sci Process Impacts; 2024 Jun; 26(6):1042-1051. PubMed ID: 38712385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfidated microscale zero-valent iron/reduced graphene oxide composite (S-mZVI/rGO) for enhanced degradation of trichloroethylene: The role of hydrogen spillover.
    Li T; Teng Y; Li X; Luo S; Xiu Z; Wang H; Sun H
    J Hazard Mater; 2023 Mar; 446():130657. PubMed ID: 36580785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.