These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31088263)

  • 1. Audio cues enhance mirroring of arm motion when visual cues are scarce.
    Lee ED; Esposito E; Cohen I
    J R Soc Interface; 2019 May; 16(154):20180903. PubMed ID: 31088263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisensory integration of visual cues from first- to third-person perspective avatars in the perception of self-motion.
    Giroux M; Barra J; Graff C; Guerraz M
    Atten Percept Psychophys; 2021 Aug; 83(6):2634-2655. PubMed ID: 33864205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Embodiment of a Point-Light Display in Virtual Reality to Perception of One's Own Movements.
    Giroux M; Barra J; Barraud PA; Graff C; Guerraz M
    Neuroscience; 2019 Sep; 416():30-40. PubMed ID: 31377453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing and correction of stepping movements with a virtual reality avatar.
    Khan O; Ahmed I; Cottingham J; Rahhal M; Arvanitis TN; Elliott MT
    PLoS One; 2020; 15(2):e0229641. PubMed ID: 32109252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of visual signals in kinaesthesia: A virtual reality study.
    Dupraz L; Bourgin J; Giroux M; Barra J; Guerraz M
    Neurosci Lett; 2022 Aug; 786():136814. PubMed ID: 35878656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered visual feedback from an embodied avatar unconsciously influences movement amplitude and muscle activity.
    Bourdin P; Martini M; Sanchez-Vives MV
    Sci Rep; 2019 Dec; 9(1):19747. PubMed ID: 31874987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective.
    Pavone EF; Tieri G; Rizza G; Tidoni E; Grisoni L; Aglioti SM
    J Neurosci; 2016 Jan; 36(2):268-79. PubMed ID: 26758821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-sensory display of self-avatar's physiological state: virtual breathing and heart beating can increase sensation of effort in VR.
    Moullec Y; Saint-Aubert J; Manson J; Cogne M; Lecuyer A
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3596-3606. PubMed ID: 36048993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Gaze Cues in Interpersonal Motor Coordination: Towards Higher Affiliation in Human-Robot Interaction.
    Khoramshahi M; Shukla A; Raffard S; Bardy BG; Billard A
    PLoS One; 2016; 11(6):e0156874. PubMed ID: 27281341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The respective contributions of visual and proprioceptive afferents to the mirror illusion in virtual reality.
    Giroux M; Barra J; Zrelli IE; Barraud PA; Cian C; Guerraz M
    PLoS One; 2018; 13(8):e0203086. PubMed ID: 30161207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of body direction and posture on taking the perspective of a humanoid avatar in a virtual environment.
    Ueda S; Nagamachi K; Nakamura J; Sugimoto M; Inami M; Kitazaki M
    PLoS One; 2021; 16(12):e0261063. PubMed ID: 34932598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personified and multistate camera motions for first-person navigation in desktop virtual reality.
    Terziman L; Marchal M; Multon F; Arnaldi B; Lécuyer A
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):652-61. PubMed ID: 23428450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining the effects of altered avatars on perception-action in virtual reality.
    Day B; Ebrahimi E; Hartman LS; Pagano CC; Robb AC; Babu SV
    J Exp Psychol Appl; 2019 Mar; 25(1):1-24. PubMed ID: 30346194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mere observation of body discontinuity affects perceived ownership and vicarious agency over a virtual hand.
    Tieri G; Tidoni E; Pavone EF; Aglioti SM
    Exp Brain Res; 2015 Apr; 233(4):1247-59. PubMed ID: 25618006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental results of affective valence and arousal to avatar's facial expressions.
    Ku J; Jang HJ; Kim KU; Kim JH; Park SH; Lee JH; Kim JJ; Kim IY; Kim SI
    Cyberpsychol Behav; 2005 Oct; 8(5):493-503. PubMed ID: 16232042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual feedback from a virtual body modulates motor illusion induced by tendon vibration.
    Fusco G; Tieri G; Aglioti SM
    Psychol Res; 2021 Apr; 85(3):926-938. PubMed ID: 32524205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual landmarks facilitate rodent spatial navigation in virtual reality environments.
    Youngstrom IA; Strowbridge BW
    Learn Mem; 2012 Feb; 19(3):84-90. PubMed ID: 22345484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of a Self-Avatar, Hand Collocation, and Hand Proximity on Embodiment and Stroop Interference.
    Peck TC; Tutar A
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1964-1971. PubMed ID: 32070969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Back to reality: differences in learning strategy in a simplified virtual and a real throwing task.
    Zhang Z; Sternad D
    J Neurophysiol; 2021 Jan; 125(1):43-62. PubMed ID: 33146063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.