BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31088271)

  • 1. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae.
    Greenwold MJ; Cunningham BR; Lachenmyer EM; Pullman JM; Richardson TL; Dudycha JL
    Proc Biol Sci; 2019 May; 286(1902):20190655. PubMed ID: 31088271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffolding proteins guide the evolution of algal light harvesting antennas.
    Rathbone HW; Michie KA; Landsberg MJ; Green BR; Curmi PMG
    Nat Commun; 2021 Mar; 12(1):1890. PubMed ID: 33767155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis.
    Stadnichuk IN; Kusnetsov VV
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of the phycobiliprotein antenna of the cryptophyte alga Guillardia theta cultured under different light intensities.
    Kieselbach T; Cheregi O; Green BR; Funk C
    Photosynth Res; 2018 Mar; 135(1-3):149-163. PubMed ID: 28540588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Dynamics of Cryptophyte Plastid Genomes.
    Kim JI; Moore CE; Archibald JM; Bhattacharya D; Yi G; Yoon HS; Shin W
    Genome Biol Evol; 2017 Jul; 9(7):1859-1872. PubMed ID: 28854597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability in spectral absorption within cryptophyte phycobiliprotein types.
    Merritt KA; Richardson TL
    J Phycol; 2024 Apr; 60(2):528-540. PubMed ID: 38456338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phycoerythrin Association with Photosystem II in the Cryptophyte Alga Rhodomonas salina.
    Stadnichuk IN; Novikova TM; Miniuk GS; Boichenko VA; Bolychevtseva YV; Gusev ES; Lukashev EP
    Biochemistry (Mosc); 2020 Jun; 85(6):679-688. PubMed ID: 32586231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phycobiliprotein diffusion in chloroplasts of cryptophyte Rhodomonas CS24.
    Mirkovic T; Wilk KE; Curmi PM; Scholes GD
    Photosynth Res; 2009 Apr; 100(1):7-17. PubMed ID: 19224391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dissection of the soluble photosynthetic antenna from the cryptophyte alga Hemiselmis andersenii.
    Rathbone HW; Laos AJ; Michie KA; Iranmanesh H; Biazik J; Goodchild SC; Thordarson P; Green BR; Curmi PMG
    Commun Biol; 2023 Nov; 6(1):1158. PubMed ID: 37957226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth phase-dependent reorganization of cryptophyte photosystem I antennae.
    Zhang S; Si L; Su X; Zhao X; An X; Li M
    Commun Biol; 2024 May; 7(1):560. PubMed ID: 38734819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photopigment, Absorption, and Growth Responses of Marine Cryptophytes to Varying Spectral Irradiance.
    Heidenreich KM; Richardson TL
    J Phycol; 2020 Apr; 56(2):507-520. PubMed ID: 31876286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromophore composition of the phycobiliprotein Cr-PC577 from the cryptophyte Hemiselmis pacifica.
    Overkamp KE; Langklotz S; Aras M; Helling S; Marcus K; Bandow JE; Hoef-Emden K; Frankenberg-Dinkel N
    Photosynth Res; 2014 Dec; 122(3):293-304. PubMed ID: 25134685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light capture and pigment diversity in marine and freshwater cryptophytes.
    Cunningham BR; Greenwold MJ; Lachenmyer EM; Heidenreich KM; Davis AC; Dudycha JL; Richardson TL
    J Phycol; 2019 Jun; 55(3):552-564. PubMed ID: 30468692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable Phycobilin Modification: An Alternative Photoacclimation Response in Cryptophyte Algae.
    Spangler LC; Yu M; Jeffrey PD; Scholes GD
    ACS Cent Sci; 2022 Mar; 8(3):340-350. PubMed ID: 35350600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transfer pathways in the CAC light-harvesting complex of Rhodomonas salina.
    Šebelík V; West R; Trsková EK; Kaňa R; Polívka T
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148280. PubMed ID: 32717221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-genome ultraconserved element phylogeny of cryptophytes.
    Greenwold MJ; Merritt K; Richardson TL; Dudycha JL
    Protist; 2023 Dec; 174(6):125994. PubMed ID: 37935085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative mitochondrial genomics of cryptophyte algae: gene shuffling and dynamic mobile genetic elements.
    Kim JI; Yoon HS; Yi G; Shin W; Archibald JM
    BMC Genomics; 2018 Apr; 19(1):275. PubMed ID: 29678149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exchange of a single amino acid residue in the cryptophyte phycobiliprotein lyase GtCPES expands its substrate specificity.
    Tomazic N; Overkamp KE; Wegner H; Gu B; Mahler F; Aras M; Keller S; Pierik AJ; Hofmann E; Frankenberg-Dinkel N
    Biochim Biophys Acta Bioenerg; 2021 Dec; 1862(12):148493. PubMed ID: 34537203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of conformational dynamics in single light-harvesting proteins from cryptophyte algae.
    Moya R; Norris AC; Spangler LC; Scholes GD; Schlau-Cohen GS
    J Chem Phys; 2022 Jul; 157(3):035102. PubMed ID: 35868944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM
    BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.