BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 31088353)

  • 1. Characterization of phytohormone and transcriptome reprogramming profiles during maize early kernel development.
    Ma C; Li B; Wang L; Xu ML; Lizhu E; Jin H; Wang Z; Ye JR
    BMC Plant Biol; 2019 May; 19(1):197. PubMed ID: 31088353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of Ca and Mg to the accumulation of amino acids in maize: from the response of physiological and biochemical processes.
    He Z; Shang X; Wang X; Xing Y; Zhang T; Yun J
    BMC Plant Biol; 2024 Jun; 24(1):579. PubMed ID: 38890571
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Yang R; Li K; Wang M; Sun M; Li Q; Chen L; Xiao F; Zhang Z; Zhang H; Jiao F; Chen J
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels.
    Cossegal M; Chambrier P; Mbelo S; Balzergue S; Martin-Magniette ML; Moing A; Deborde C; Guyon V; Perez P; Rogowsky P
    Plant Physiol; 2008 Apr; 146(4):1553-70. PubMed ID: 18287491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes.
    Yu T; Li G; Dong S; Liu P; Zhang J; Zhao B
    BMC Plant Biol; 2016 Nov; 16(1):241. PubMed ID: 27809771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Zn accumulation and speciation in kernels of sweetcorn and maize differing in maturity.
    Cheah ZX; Kopittke PM; Scheckel KG; Noerpel MR; Bell MJ
    Ann Bot; 2020 Jan; 125(1):185-193. PubMed ID: 31678993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ARF gene mutation creates flint kernel architecture in dent maize.
    Wang H; Huang Y; Li Y; Cui Y; Xiang X; Zhu Y; Wang Q; Wang X; Ma G; Xiao Q; Huang X; Gao X; Wang J; Lu X; Larkins BA; Wang W; Wu Y
    Nat Commun; 2024 Mar; 15(1):2565. PubMed ID: 38519520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion.
    Shen S; Zhang L; Liang XG; Zhao X; Lin S; Qu LH; Liu YP; Gao Z; Ruan YL; Zhou SL
    J Exp Bot; 2018 Mar; 69(7):1599-1613. PubMed ID: 29365129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the phosphorus-starch content balance mechanisms in maize grains using GWAS population and transcriptome data.
    Luo B; Zhang H; Han Z; Zhang X; Guo J; Zhang S; Luo X; Zhao J; Wang W; Yang G; Zhang C; Li J; Ma J; Zheng H; Tang Z; Lan Y; Ma P; Nie Z; Li Y; Liu D; Wu L; Gao D; Gao S; Su S; Guo J; Gao S
    Theor Appl Genet; 2024 Jun; 137(7):158. PubMed ID: 38864891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maize BIG GRAIN1 homolog overexpression increases maize grain yield.
    Simmons CR; Weers BP; Reimann KS; Abbitt SE; Frank MJ; Wang W; Wu J; Shen B; Habben JE
    Plant Biotechnol J; 2020 Nov; 18(11):2304-2315. PubMed ID: 32356392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the composition and differentiation of endophytic microbial communities in kernels via 368 maize transcriptomes.
    Tao F; Chen F; Liu H; Chen C; Cheng B; Han G
    J Adv Res; 2024 May; ():. PubMed ID: 38772425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Re-Evaluation of the Relative Roles of Two Invertases, INCW2 and IVR1, in Developing Maize Kernels and Other Tissues.
    Carlson SJ; Chourey PS
    Plant Physiol; 1999 Nov; 121(3):1025-1035. PubMed ID: 10557252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Viscoelastic Behavior of Maize Kernel: Application of Frequency-Temperature Superposition.
    Sheng S; Wu M; Lv W
    Foods; 2024 Mar; 13(7):. PubMed ID: 38611282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Not Available].
    Giri AK; Laurençot P; Warnecke G
    Nonlinear Anal Theory Methods Appl; 2012 Mar; 75(4):2199-2208. PubMed ID: 22389550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize plastid terminal oxidase (ZmPTOX) regulates the color formation of leaf and kernel by modulating plastid development.
    Huang Q; Zhao Z; Liu X; Yuan X; Zhao R; Niu Q; Li C; Liu Y; Wang D; Yu T; Yi H; Yang C; Rong T; Cao M
    J Genet Genomics; 2024 May; ():. PubMed ID: 38815650
    [No Abstract]   [Full Text] [Related]  

  • 16. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize.
    Wang C; Li H; Long Y; Dong Z; Wang J; Liu C; Wei X; Wan X
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. easyMF: A Web Platform for Matrix Factorization-Based Gene Discovery from Large-scale Transcriptome Data.
    Ma W; Chen S; Qi Y; Song M; Zhai J; Zhang T; Xie S; Wang G; Ma C
    Interdiscip Sci; 2022 Sep; 14(3):746-758. PubMed ID: 35585280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Transcription Regulatory Domains of OsMADS29: Identification of Proximal Auxin-Responsive Domains and a Strong Distal Negative Element.
    Khurana R; Bhimrajka S; Sivakrishna Rao G; Verma V; Boora N; Gawande G; Kapoor M; Rao KV; Kapoor S
    Front Plant Sci; 2022; 13():850956. PubMed ID: 35557721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of maize endosperm transfer cell development.
    Zheng Y
    Plant Cell Rep; 2022 May; 41(5):1171-1180. PubMed ID: 34689216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Metabolomic Landscape of Maize Plants Treated With a Microbial Biostimulant Under Well-Watered and Drought Conditions.
    Nephali L; Moodley V; Piater L; Steenkamp P; Buthelezi N; Dubery I; Burgess K; Huyser J; Tugizimana F
    Front Plant Sci; 2021; 12():676632. PubMed ID: 34149776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.