These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31088617)

  • 1. Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5'-phosphate and ATP.
    Moon YM; Yang SY; Choi TR; Jung HR; Song HS; Han YH; Park HY; Bhatia SK; Gurav R; Park K; Kim JS; Yang YH
    Enzyme Microb Technol; 2019 Aug; 127():58-64. PubMed ID: 31088617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of pyridoxal 5'-phosphate from pyridoxal by pyridoxal kinase (pdxY) to support cadaverine production in Escherichia coli.
    Kim JH; Kim J; Kim HJ; Sathiyanarayanan G; Bhatia SK; Song HS; Choi YK; Kim YG; Park K; Yang YH
    Enzyme Microb Technol; 2017 Sep; 104():9-15. PubMed ID: 28648182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of cadaverine production in whole cell system with baker's yeast for cofactor regeneration.
    Han YH; Kim HJ; Choi TR; Song HS; Lee SM; Park SL; Lee HS; Cho JY; Bhatia SK; Gurav R; Park K; Yang YH
    Bioprocess Biosyst Eng; 2021 Apr; 44(4):891-899. PubMed ID: 33486578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration.
    Kim HJ; Kim YH; Shin JH; Bhatia SK; Sathiyanarayanan G; Seo HM; Choi KY; Yang YH; Park K
    J Microbiol Biotechnol; 2015 Jul; 25(7):1108-13. PubMed ID: 25674800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a pyridoxal 5'-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis.
    Ma W; Cao W; Zhang B; Chen K; Liu Q; Li Y; Ouyang P
    Sci Rep; 2015 Oct; 5():15630. PubMed ID: 26490441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli.
    Osire T; Yang T; Xu M; Zhang X; Long M; Ngon NKA; Rao Z
    Int J Biol Macromol; 2021 Feb; 169():8-17. PubMed ID: 33301846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Study of Lysine Decarboxylases from Klebsiella pneumoniae in Escherichia coli and Application of Whole Cell Bioconversion for Cadaverine Production.
    Kim JH; Kim HJ; Kim YH; Jeon JM; Song HS; Kim J; No SY; Shin JH; Choi KY; Park KM; Yang YH
    J Microbiol Biotechnol; 2016 Sep; 26(9):1586-92. PubMed ID: 27291676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-Tuning Pyridoxal 5'-Phosphate Synthesis in
    Liu C; Gao C; Song L; Li X; Chen X; Wu J; Song W; Wei W; Liu L
    ACS Synth Biol; 2024 Jun; 13(6):1820-1830. PubMed ID: 38767944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadaverine Production by Using Cross-Linked Enzyme Aggregate of
    Park SH; Soetyono F; Kim HK
    J Microbiol Biotechnol; 2017 Feb; 27(2):289-296. PubMed ID: 27780956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of enzymatic quality and quantity using pyridoxal 5'-phosphate (PLP) regeneration system as a decoy in Escherichia coli.
    Xue C; Ng IS
    Int J Biol Macromol; 2023 Apr; 235():123814. PubMed ID: 36841388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering synthetic microbial consortium for cadaverine biosynthesis from glycerol.
    Liu S; Mi J; Song K; Qi H; Zhang L
    Biotechnol Lett; 2022 Dec; 44(12):1389-1400. PubMed ID: 36203106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Level Conversion of l-lysine into Cadaverine by
    Kim HT; Baritugo KA; Oh YH; Kang KH; Jung YJ; Jang S; Song BK; Kim IK; Lee MO; Hwang YT; Park K; Park SJ; Joo JC
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31337154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A direct enzymatic evaluation platform (DEEP) to fine-tuning pyridoxal 5'-phosphate-dependent proteins for cadaverine production.
    Xue C; Ng IS
    Biotechnol Bioeng; 2023 Jan; 120(1):272-283. PubMed ID: 36271696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine Decarboxylase with an Enhanced Affinity for Pyridoxal 5-Phosphate by Disulfide Bond-Mediated Spatial Reconstitution.
    Sagong HY; Kim KJ
    PLoS One; 2017; 12(1):e0170163. PubMed ID: 28095457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB.
    Ma W; Cao W; Zhang H; Chen K; Li Y; Ouyang P
    Biotechnol Lett; 2015 Apr; 37(4):799-806. PubMed ID: 25515797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma aminobutyric acid (GABA) production in Escherichia coli with pyridoxal kinase (pdxY) based regeneration system.
    Ham S; Bhatia SK; Gurav R; Choi YK; Jeon JM; Yoon JJ; Choi KY; Ahn J; Kim HT; Yang YH
    Enzyme Microb Technol; 2022 Apr; 155():109994. PubMed ID: 35077875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP is not essential for cadaverine production by Escherichia coli whole-cell bioconversion.
    Song C; Li Y; Ma W
    J Biotechnol; 2022 Jul; 353():44-50. PubMed ID: 35660066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining directed evolution with high cell permeability for high-level cadaverine production in engineered Escherichia coli.
    Liu X; Luo R; Wang D; Xiao K; Lin F; Kang YQ; Xia X; Zhou X; Hu G
    Biotechnol J; 2024 Mar; 19(3):e2300642. PubMed ID: 38472088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of lysine into cadaverine using barium alginate-immobilized Escherichia coli overexpressing CadA.
    Bhatia SK; Kim YH; Kim HJ; Seo HM; Kim JH; Song HS; Sathiyanarayanan G; Park SH; Park K; Yang YH
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2315-22. PubMed ID: 26314400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase.
    Tateno T; Okada Y; Tsuchidate T; Tanaka T; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):115-21. PubMed ID: 18989633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.