These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31088906)

  • 41. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat.
    Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R
    G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimising Genomic Selection in Wheat: Effect of Marker Density, Population Size and Population Structure on Prediction Accuracy.
    Norman A; Taylor J; Edwards J; Kuchel H
    G3 (Bethesda); 2018 Aug; 8(9):2889-2899. PubMed ID: 29970398
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce.
    Beaulieu J; Doerksen T; Clément S; MacKay J; Bousquet J
    Heredity (Edinb); 2014 Oct; 113(4):343-52. PubMed ID: 24781808
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genomic evaluation of carcass traits of Korean beef cattle Hanwoo using a single-step marker effect model.
    Koo Y; Alkhoder H; Choi TJ; Liu Z; Reents R
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37004242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees.
    Resende MDV; Resende MFR; Sansaloni CP; Petroli CD; Missiaggia AA; Aguiar AM; Abad JM; Takahashi EK; Rosado AM; Faria DA; Pappas GJ; Kilian A; Grattapaglia D
    New Phytol; 2012 Apr; 194(1):116-128. PubMed ID: 22309312
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genomic selection for productive traits in biparental cassava breeding populations.
    Torres LG; Vilela de Resende MD; Azevedo CF; Fonseca E Silva F; de Oliveira EJ
    PLoS One; 2019; 14(7):e0220245. PubMed ID: 31344109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-wide association study and genomic prediction using parental and breeding populations of Japanese pear (Pyrus pyrifolia Nakai).
    Minamikawa MF; Takada N; Terakami S; Saito T; Onogi A; Kajiya-Kanegae H; Hayashi T; Yamamoto T; Iwata H
    Sci Rep; 2018 Aug; 8(1):11994. PubMed ID: 30097588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genomic selection in a pig population including information from slaughtered full sibs of boars within a sib-testing program.
    Samorè AB; Buttazzoni L; Gallo M; Russo V; Fontanesi L
    Animal; 2015 May; 9(5):750-9. PubMed ID: 25510405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genomic prediction models for traits differing in heritability for soybean, rice, and maize.
    Kaler AS; Purcell LC; Beissinger T; Gillman JD
    BMC Plant Biol; 2022 Feb; 22(1):87. PubMed ID: 35219296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program.
    Bernal-Vasquez AM; Gordillo A; Schmidt M; Piepho HP
    BMC Genet; 2017 May; 18(1):51. PubMed ID: 28569139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture.
    Vallejo RL; Leeds TD; Gao G; Parsons JE; Martin KE; Evenhuis JP; Fragomeni BO; Wiens GD; Palti Y
    Genet Sel Evol; 2017 Feb; 49(1):17. PubMed ID: 28148220
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The value of early-stage phenotyping for wheat breeding in the age of genomic selection.
    Borrenpohl D; Huang M; Olson E; Sneller C
    Theor Appl Genet; 2020 Aug; 133(8):2499-2520. PubMed ID: 32488300
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat.
    Zhao Y; Mette MF; Gowda M; Longin CF; Reif JC
    Heredity (Edinb); 2014 Jun; 112(6):638-45. PubMed ID: 24518889
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus.
    Müller BSF; Neves LG; de Almeida Filho JE; Resende MFR; Muñoz PR; Dos Santos PET; Filho EP; Kirst M; Grattapaglia D
    BMC Genomics; 2017 Jul; 18(1):524. PubMed ID: 28693539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of seed protein alleles from three soybean sources on seed composition and agronomic traits.
    Brzostowski LF; Pruski TI; Specht JE; Diers BW
    Theor Appl Genet; 2017 Nov; 130(11):2315-2326. PubMed ID: 28795235
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana).
    Lenz PRN; Beaulieu J; Mansfield SD; Clément S; Desponts M; Bousquet J
    BMC Genomics; 2017 Apr; 18(1):335. PubMed ID: 28454519
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme.
    Tribout T; Larzul C; Phocas F
    Genet Sel Evol; 2013 Oct; 45(1):40. PubMed ID: 24127883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Forecasting the accuracy of genomic prediction with different selection targets in the training and prediction set as well as truncation selection.
    Schopp P; Riedelsheimer C; Utz HF; Schön CC; Melchinger AE
    Theor Appl Genet; 2015 Nov; 128(11):2189-201. PubMed ID: 26231985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program.
    Battenfield SD; Guzmán C; Gaynor RC; Singh RP; Peña RJ; Dreisigacker S; Fritz AK; Poland JA
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898810
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.