BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

834 related articles for article (PubMed ID: 31088913)

  • 1. Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel.
    Killoran RC; Smith MJ
    J Biol Chem; 2019 Jun; 294(25):9937-9948. PubMed ID: 31088913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins.
    Zhang B; Zhang Y; Wang Z; Zheng Y
    J Biol Chem; 2000 Aug; 275(33):25299-307. PubMed ID: 10843989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncogenic Dbl, Cdc42, and p21-activated kinase form a ternary signaling intermediate through the minimum interactive domains.
    Wang L; Zhu K; Zheng Y
    Biochemistry; 2004 Nov; 43(46):14584-93. PubMed ID: 15544329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases.
    Ren Y; Li R; Zheng Y; Busch H
    J Biol Chem; 1998 Dec; 273(52):34954-60. PubMed ID: 9857026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts.
    Marshall CB; Meiri D; Smith MJ; Mazhab-Jafari MT; Gasmi-Seabrook GM; Rottapel R; Stambolic V; Ikura M
    Methods; 2012 Aug; 57(4):473-85. PubMed ID: 22750304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chaperone SmgGDS-607 has a dual role, both activating and inhibiting farnesylation of small GTPases.
    García-Torres D; Fierke CA
    J Biol Chem; 2019 Aug; 294(31):11793-11804. PubMed ID: 31197034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition and activation of Rho GTPases by Vav1 and Vav2 guanine nucleotide exchange factors.
    Heo J; Thapar R; Campbell SL
    Biochemistry; 2005 May; 44(17):6573-85. PubMed ID: 15850391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of the Rho GTPase signaling.
    Hakoshima T; Shimizu T; Maesaki R
    J Biochem; 2003 Sep; 134(3):327-31. PubMed ID: 14561717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ran's C-terminal, basic patch, and nucleotide exchange mechanisms in light of a canonical structure for Rab, Rho, Ras, and Ran GTPases.
    Neuwald AF; Kannan N; Poleksic A; Hata N; Liu JS
    Genome Res; 2003 Apr; 13(4):673-92. PubMed ID: 12671004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR Detection Methods for Profiling RAS Nucleotide Cycling.
    Killoran RC; Smith MJ
    Methods Mol Biol; 2021; 2262():169-182. PubMed ID: 33977476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct subclasses of small GTPases interact with guanine nucleotide exchange factors in a similar manner.
    Day GJ; Mosteller RD; Broek D
    Mol Cell Biol; 1998 Dec; 18(12):7444-54. PubMed ID: 9819430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases.
    Arrazola Sastre A; Luque Montoro M; Gálvez-Martín P; Lacerda HM; Lucia AM; Llavero F; Zugaza JL
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32878220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of the atypical activation mechanism of KRAS
    Bera AK; Lu J; Wales TE; Gondi S; Gurbani D; Nelson A; Engen JR; Westover KD
    J Biol Chem; 2019 Sep; 294(38):13964-13972. PubMed ID: 31341022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SmgGDS displays differential binding and exchange activity towards different Ras isoforms.
    Vikis HG; Stewart S; Guan KL
    Oncogene; 2002 Apr; 21(15):2425-32. PubMed ID: 11948427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual specificity of a prokaryotic GTPase-activating protein (GAP) to two small Ras-like GTPases in Myxococcus xanthus.
    Kanade M; Singh NB; Lagad S; Baranwal J; Gayathri P
    FEBS J; 2021 Mar; 288(5):1565-1585. PubMed ID: 32772462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of the Bcr GTPase-activating domain is regulated through direct protein/protein interaction with the Rho guanine nucleotide dissociation inhibitor.
    Kweon SM; Cho YJ; Minoo P; Groffen J; Heisterkamp N
    J Biol Chem; 2008 Feb; 283(6):3023-3030. PubMed ID: 18070886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling.
    Boissier P; Huynh-Do U
    Cell Signal; 2014 Mar; 26(3):483-91. PubMed ID: 24308970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rho GTPase regulatory proteins in podocytes.
    Matsuda J; Asano-Matsuda K; Kitzler TM; Takano T
    Kidney Int; 2021 Feb; 99(2):336-345. PubMed ID: 33122025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time NMR study of three small GTPases reveals that fluorescent 2'(3')-O-(N-methylanthraniloyl)-tagged nucleotides alter hydrolysis and exchange kinetics.
    Mazhab-Jafari MT; Marshall CB; Smith M; Gasmi-Seabrook GM; Stambolic V; Rottapel R; Neel BG; Ikura M
    J Biol Chem; 2010 Feb; 285(8):5132-6. PubMed ID: 20018863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Insights into the Regulation Mechanism of Small GTPases by GEFs.
    Toma-Fukai S; Shimizu T
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31514408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.